Part III Attachment III-E Appendix III-E.5

SUPPLEMENTAL SUBSURFACE INVESTIGATION REPORT PHASE V

Pescadito Environmental Resource Center
MSW No. 2374
Webb County, Texas

Initial Submittal September 2015

Prepared For:

Rancho Viejo Waste Management, LLC
1116 Calle del Norte
Laredo, TX 78041

Prepared by:

CB&I Environmental and Infrastructure, Inc.

12005 Ford Rd, Suite 600 Dallas, TX 75234

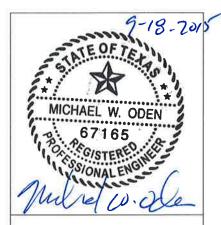

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Table of Contents

1.0	INT	TRODUCTION	1
2.0	PR	EVIOUS INVESTIGATIONS – PHASES I-IV	2
2.1	.1	RotoSonic Drilling Limitations	3
2.1	.2	Subsurface Water Information	4
2.1	.3	Hydrogeologic Testing of Phase III Piezometers	5
3.0	PH.	ASE V INVESTIGATION	6
3.1	.1	Field Investigation	6
3.1	.2	Subsurface Water Observations	9
3.1	.3	Piezometer Recovery Testing Results	11
3.1	.4	Geotechnical Test Results	15
4.0	Yeg	gua-Jackson Boundary Definition	17
5.0	Sub	surface Water Quality Information	18
6.0	CO	NCLUSIONS	20
<u>List o</u>	f Pho	<u>otos</u>	
Photo	1 - 7	Fest Pit 1 – January 2012	2
Photo	2 - 7	Test Pit 1 – January 2015	3
Photo	3 - (Grouting Boring B-52 – January 2015	7
<u>List o</u>	f Tab	<u>bles</u>	
Table	1 - P	Piezometer Construction Summary	8
		Permeability Results	
Table	3 – I	Horizontal Permeability Calculations	15
<u>List o</u>	f Fig	<u>ures</u>	
Figur	e 1 –	Phase V Piezometers – Permeability Test Data	13

Attachments

III-E.5-A	Figures
III-E.5-B	Phase V Logs of Borings
III-E.5-C	Photographs
III-E.5-D	Piezometer Data Sheets
III-E.5-E	TDLR Well Reports
III-E.5-F	Geotechnical Test Data
III-E.5-G	Subsurface Water Analytical Testing Results

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

1.0 INTRODUCTION

The purpose of this report is to provide additional information regarding the subsurface soils and groundwater at the Pescadito Environmental Resource Center (PERC) project in Webb County, Texas. Subsurface investigation and geotechnical testing for the PERC project was originally conducted in four phases. The results of the Phases I-IV subsurface investigation and geotechnical testing are presented in Part III, Attachment III-E, Appendix III-E.2, <u>Subsurface Investigation Report</u> (SIR) and Part III, Attachment III-E, Appendix III-E.3, <u>Geotechnical Data Report</u> (GDR). Both reports were originally dated February 25, 2015 and updated in September 2015. That information was provided to meet the requirements of 30 TAC §330.63(e)(4) and §330.63(e)(5)(A-E) and the requirements of the approved <u>Soil Boring Plan</u>.

Subsequent to Phases I-IV, supplemental field work and additional testing (Phase V) has been conducted to provide additional information useful for general landfill design. This supplemental information is provided to address the following:

- 1. Information limitations imposed by the use of Sonic drilling/sampling methods used predominantly in Phases II and III of the earlier investigations.
- 2. Obtain undisturbed geotechnical test samples to depths of 150 feet to supplement those from the Phase IV test pits.
- Obtain additional information about shallow subsurface water and/or groundwater and hydraulic interconnection and to test techniques for annular seal of piezometers and monitoring wells.
- 4. Reconcile the term "moist" used to describe the Yegua-Jackson (Y-J) soils on the Phase I-III boring logs with the very dry geotechnical test results and subsurface water observations, etc. and specifically the regional geology and soil characteristics.
- 5. Provide additional information regarding the presence/absence of the Y-J contact within the project boundary.
- 6. Obtain additional laboratory and field testing to supplement previous investigative results.

2.0 PREVIOUS INVESTIGATIONS – PHASES I-IV

The Y-J encountered at the site is predominantly (>90%) "claystone" with minor amounts of "sandstone" and "siltstone." The encountered Y-J materials appear "rock-like" due to the fact that they have been heavily over-consolidated during their geologic history. In essence they are "compaction" claystones as opposed to cemented claystones. However, when exposed to the elements for a brief period or when processed, these rock-like materials quickly regain their soil identities. This rapid transformation is due to the fact that the "claystones" have a blocky, intensely-fissured structure (see Photo 1 - Test Pit - January 2012). A good example of the transformation is evident from the Phase IV test pits (See Photo 2 - Test Pit 1 January 2015 below). Other examples are the various dams constructed in the immediate area where only the Y-J colors remain, the rock-like materials have transformed back to soil.

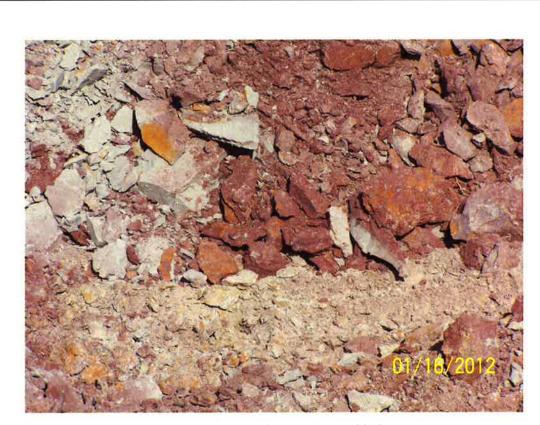


Photo 1 - Test Pit 1 - January 2012

Photo 2 - Test Pit 1 - January 2015

2.1.1 Sonic Drilling Limitations

Sonic drilling is a recognized method for geoenvironmental drilling (ASTM D6914-04 (2010)) suitable for meeting the requirements of the Municipal Solid Waste Management Regulations (MSWMR). However, the Sonic drilling/sampling methods used predominantly in Phases II and III of the earlier investigations imposed certain limitations. The method does not provide "undisturbed" samples for such geotechnical testing purposes as strength, consolidation, or permeability. In the earlier investigations, two deep test pits (Phase IV) were utilized to obtain representative, undisturbed test samples of all four identified subsurface strata for subsequent laboratory testing.

The SIR and GDR discuss the following issues that are now further addressed by this Report:

- <u>SIR</u>, § 2.2.1 Soil Borings discusses both the advantages and the limitations of the Sonic drilling methodology.
- <u>SIR</u>, § 2.2.2 <u>Piezometers</u> discusses the possible ramifications, i.e., formation disturbance, etc., of setting piezometers in borings drilled in the Y-J with Sonic methods.
- <u>SIR</u>, § 4.2.2 Water Levels Measured in Piezometers assumed vertical hydraulic connection between near-surface and deeper stratigraphic units as a consequence of Sonic drilling. Note that this assumption is a significant variance from the Y-J Groundwater Availability Model (GAM) (TWDB, 2010)
- The annular seal in all Phase I-III piezometers consisted of "granular bentonite chips" added from the surface. *SIR*, *Appendix F*, *Piezometer Construction Diagrams*. There does not appear to have been any attempt to address the possible formation damage and caving due to the Sonic drilling by the use of pressure grout from the bottom to the top.

2.1.2 Subsurface Water Information

Some of the field descriptions of cores from the previous Phases I to III boring logs described the subsurface conditions as "moist", but approximately 200 Atterberg Limit and natural moisture content determinations showed that moisture contents were consistently dry of the Plastic Limit. In fact, natural moisture contents were seven to eight percentage points (on average) below the Plastic Limit. (GDR, § 5.0 Conclusions, R-K, 2015). In general, the following is noted regarding the Phase I to IV investigations:

- The Phase I to III piezometer installations showed comparable stable water levels regardless of the installed depth (SIR, § 4.2.2 Water Levels Measured in Piezometers, R-K, 2015).
- The Phase IV Test Pits encountered slight seepage in TP-1 associated with the Recent-Pleistocene (R-P) and Y-J contact zone during excavation; however, TP-1 was left open and the seepage dried up overnight and no accumulation occurred. TP-2 did not encounter shallow subsurface water. (SIR, § 4.2.4 Observations from Test Pits, R-K, 2015).

 Note that the landfill design assumes the water level at the ground surface as a conservative measure.

2.1.3 Hydrogeologic Testing of Phase III Piezometers

Part III, Attachment III-E, Appendix III-E.4, <u>Summary of Hydrogeologic Testing in Selected Piezometers</u> discusses the hydrogeologic testing that was conducted in ten piezometers installed as part of the Phase III site investigation at the site. The Phase III piezometers were installed in what appeared to be potentially transmissive zones, i.e., isolated sandy and/or silty intervals in the predominantly clay matrix based on the evaluation of the previous Phase I, II, and III boring logs and geophysical data. Information on the piezometer installations can be found in Part III, Attachment III-E, Appendix III-E.2, <u>Subsurface Investigation Report</u>. The hydrogeologic tests on select piezometers included falling head and rising head tests induced by inserting and removing solid slugs (i.e., slug tests). Based on the results of the slug tests, a subset of five piezometers indicating the highest transmissive potential were selected for additional higher-stress, single-well, pump-down tests.

The test results, including those from what were the most transmissive units in the subsurface, as determined by the borings and geophysical logs, showed that subsurface conditions are not transmissive. In fact, all of the test results were in the poorly permeable to practically impervious range as defined by Terzaghi, Peck, and Mesri [3rd Edition, 1996] and others. That is, the pump down tests proved that the materials that were indicated to be the most transmissive, were not very transmissive at all.

3.0 PHASE V INVESTIGATION

As discussed above, the Phase V investigation was developed and implemented to obtain additional information regarding the soils and subsurface water at the site for design considerations. The information is presented to update and augment the information previously presented to meet the MSWMR.

3.1.1 Field Investigation

The field portion of the Phase V Investigation was conducted in January and February, 2015. A total of three core (sample) borings were drilled as shown on Figure 1 in Attachment A to this Appendix III-E.5 (Figure III-E.5-A.1 in Attachment III-E.5-A to this Appendix). The borings have been included (annotated) on the cross sections previously provided in Appendix III-E.2 (SIR) for comparison purposes. They are included as Figures III-E.5-A.2 and 3 in Attachment III-E.5-A.

A large truck-mounted Gardner-Denver Model 15W drilling rig was used. Sample borings were drilled to an approximate depth of 150 feet. A total of five piezometers were set – four of the piezometers were set in "twin" holes adjacent (approximately 0 – 50 feet away) to the sample boring locations. All drilling and piezometer installation was performed by a Texas-Licensed Water Well Driller under the direction of a Professional Geologist (PG) with over twenty seven years of experience employed by CB&I. The PG, licensed in Illinois, Indiana and Wisconsin, also logged the samples as they were obtained and prepared them for shipment for review and laboratory testing. See the Phase V Logs of Borings included as Attachment B to Appendix III-E.5 (III-E.5-B). The drilling method used was primarily "air rotary" with "mud-rotary" used in one instance. Surface casing was employed to "seal" down to below the highly-weathered Y-J and particularly, the "contact zone" between the R-P and Y-J to minimize the intrusion of shallow subsurface water, eliminate shallow caving of unconsolidated materials and fall-in of any gravel potentially damaging to either the core bit or the core recovery. At B-52, a watertight seal was not obtained and the combination of minimal amounts of water combined with highly plastic clay cuttings required a switch to mud rotary drilling.

Sample drilling of the Y-J was conducted using a conventional Christensen 4-5/8 x 3-inch double tube core barrel employing a face-discharge ChrisDril bit and equipped with a split inner barrel. See photos 1 and 2 in Attachment C to this Appendix (III-E.5-C). Sample borings were cored continuously to the total depth with the recovered core being 3-inches in diameter. Both core recovery (as a percent) and Rock Quality Index or RQD (as a percent) are provided for each core run on the boring log. Recovered core was logged along with drilling observations, etc. Core samples were packaged and placed in waxed core boxes specifically manufactured for core storage. Visual reference samples were placed in glass jars. Boring B-58 was converted to a piezometer while borings B-55 and B-52 were pressure grouted from the bottom to top using a tremie and bentonite grout.

Photo 3 - Grouting Boring B-52 - January 2015

Two piezometers were set at the B-52 location – P-52S or shallow and P-52D or deep. Both piezometers were drilled with air rotary in separate holes for accurate subsurface water identification possibly unavailable from the original B-52 boring. Since the original B-52 was drilled using mud-rotary techniques, the process could have masked the identification of limited subsurface water and produced the results shown as moist on the log of borings. The "twin" holes were also used to avoid potential problems associated with plugging the original borehole back up to the desired screen interval.

Piezometer P-55D was also set in a separately drilled "twin" hole in lieu of plugging (grouting) boring B-55 back up to the screened interval. Piezometer P-58D was set to the full depth in boring B-58 and the shallow piezometer P-58S was set in an adjacent "twin" hole. Two-inch diameter piezometers were set in holes that were drilled using a 6-1/4-inch drag or wing bit (including the reaming of B-58 for piezometer installation). Nominal 10-foot long screens, centered in a 15-foot filter-packed interval, were used for all piezometers. The annular seal was provided using a grout pump and tremie to place bentonite grout from the bottom to top. For the shallow piezometer installation P-52S, the annular seal was constructed from bentonite chips placed in 6-inch lifts and hydrated. Piezometer data sheets are included in Attachment III-E.5-D. Copies of well reports furnished to the Texas Department of Licensing and Regulation (TDLR) are included in Attachment III-E.5-E.

Table 1 – Piezometer Construction Summary							
Piezometer	Screened Unit	Total Depth Interval (feet bgs)	Screened Interval (feet bgs)				
P-52S	Shallow, Wet Sandstone	30	18-28				
P-52D	Deep, Dry Sandstone	92	80-90				
P-55D	Deep, Wet Sandstone	105	93-103				
P-58S	Shallow, Wet Claystone	35	20-30				
P-58D	Deep, Dry Claystone	150	140-150				

Upon completion of piezometer installation, either falling head tests (piezometers P-52S, P-52D, P-55D, and P-58D) and/or rising head tests (piezometer P-58S) were conducted for at least twenty-four hours to verify piezometer functionality. The results of those tests are discussed below.

3.1.2 Subsurface Water Observations

Observations of subsurface water were of particular interest during this investigation since almost all strata in the previous Phase I-III borings were logged as "moist"; while subsequent geotechnical testing on the materials consistently showed moisture contents 7 to 8 percentage points below the plastic limit. Further, excavated materials were dry and there was an absence of water in the Phase IV test pit excavations. This difference may be related to the fact that significant water amounts were added downhole during the Phase II and III Sonic drilling activities because of the very dense, overconsolidated subsurface materials. This water addition may have created a wet skin on recovered samples that were logged as "moist."

For Phase V, observations of subsurface water were made during the drilling of the holes and examination of the recovered samples after boring completion and during installation of the piezometers and piezometer installation. The use of air rotary drilling was the preferred method to aid in these observations since no water was introduced.

During Core Drilling

- Boring B-52 began with air-rotary drilling and encountered limited amounts of subsurface water associated with the Y-J and R-P contact zone at about the 10-foot depth. The underlying Y-J was mostly sandstone to approximately 28 feet. A surface casing was set to 20 feet and was ineffective in eliminating water entrance into the boring. To assist in efficiently removing the clay cuttings as the core hole was advanced, the coring technique was switched to mud rotary and continued to the termination depth of 150 feet. However, all core was logged as dry upon close examination using the standard technique of carefully removing any "skin" from the core surface before field examination (see photographs in Attachment III-E.5-C of this Appendix).
- Boring B-55 used air-rotary drilling to core all the way down to the completion depth of 153 feet. Moist soil materials were encountered in Shelby Tube samples down to the R-P and Y-J contact zone (approximately 11 to 12 feet in depth); however, no shallow subsurface water was encountered. While reaming out the borehole for the surface casing, moisture was indicated in the cuttings from approximately the 10-foot depth. Surface casing was set to 17

feet. Moisture was noted in some of the recovered core samples and small amounts of water were observed at several intervals during drilling; notably 32 to 36 feet and 95.5 to 101 feet.

• Boring B-58 used air-rotary drilling to core all the way down to the completion depth of 150 feet. Moist soil materials were encountered in Shelby Tube samples down to the R-P and Y-J contact zone (approximately 11 to 12 feet in depth); however, no shallow subsurface water was encountered. Moisture was noted in some of the recovered core samples and small amounts of water were observed at several intervals during drilling; notably 12 to 17 feet, 22.5 to 30.5 and 32 to 32.3 feet.

Select photos of the core material are included as Attachment C to this Appendix (III-E.5-C).

During Piezometer Installation

- Piezometer P-52S was installed in a twin borehole some 10 feet west of boring B-52. The 30-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 22-foot depth during drilling; however, the hole was dry at the completion of drilling activities.
- Piezometer P-52D was installed in a twin borehole some 30 feet west of boring B-52.
 Surface casing was set to a depth of 30 feet. The 92-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 40-foot depth during drilling; however, the hole was dry at completion of drilling.
- Piezometer P-55D was installed in a twin borehole approximately 40 feet southwest of boring B-55. Surface casing was set to a depth of 45 feet. The 105-foot-deep piezometer boring was drilled with air. Moisture was observed in the cuttings at approximately the 32 to 36-foot and 90 to 105-foot depth intervals during drilling; however, the hole was dry at completion of drilling.
- Piezometer P-58S was installed in a twin hole approximately 30 feet northwest of boring B-58. No moisture was observed during drilling of the twin hole with air rotary to a depth of 35-feet; however, slight water entered the hole during piezometer installation.

Piezometer P-58D was set in the B-58 borehole to 150-feet. Surface casing was set to a
depth of 40 feet. No moisture was observed at depth during coring or during reaming for the
piezometer installation.

After Boring and/or Piezometer Completion

- Boring B-52 took several days to complete drilling. Water levels were taken each day prior
 to the resumption of drilling. Water levels were approximately 8 feet below ground surface
 (bgs). Water levels observed in piezometers P-52S and P-52D were approximately the same
 as in boring B-52.
- Boring B-55 took several days to complete drilling. Water levels were taken each day prior
 to the resumption of drilling. Water levels were approximately 7 to 10 feet bgs. Water levels
 in piezometer P-55D was approximately the same as in boring B-55.
- Boring B-58 took several days to complete drilling. Water levels were taken each day prior to the resumption of drilling. After the first day, the 40-foot deep hole was dry. After the second day, water was at 22 feet bgs in the 105-foot deep hole. Water levels in piezometer P-58D measured over several days were approximately 116 feet bgs prior to the falling head test. The piezometer P-58S water level was approximately 23 feet bgs prior to the rising head test.

3.1.3 Piezometer Recovery Testing Results

Although primarily intended to verify piezometer functionality, the falling head and or rising head testing did provide an opportunity for evaluating the in situ permeability (hydraulic conductivity) of the Y-J materials represented in the screened interval of piezometers P-52S, P-52D, P-55D, and P-58S. Not unexpectedly, the time lag for piezometer P-58D was so large that a 28-hour test provided insufficient recovery for reasonable analysis. For hydraulic conductivity analyses, Hvorslev's Method "F" was used along with the standard assumption that horizontal permeability is ten times (an order of magnitude) greater than vertical permeability. Method F is probably most appropriate for the piezometers screened in discrete sand units, i.e., the discrete sandstone unit piezometers, P-52S, P-52D and P-55D whereas Method G, i.e., uniform

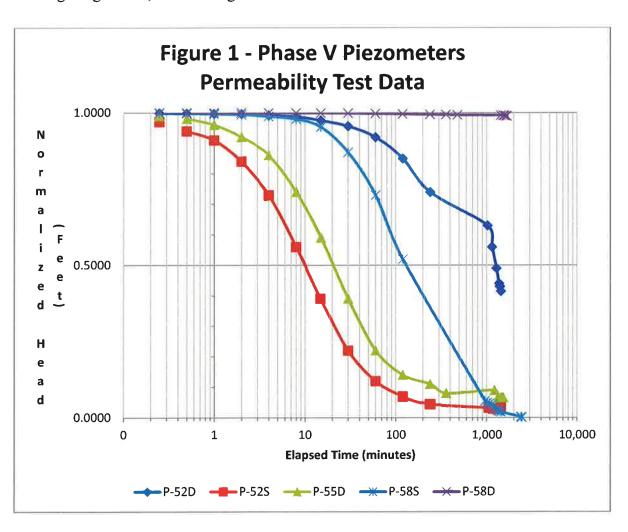

conditions, might be more appropriate for the general claystone matrix piezometers, P-58S and P-58D. However, Method F will estimate a permeability about 10% higher than Method G and thus its use is conservative. Note that if an anisotropy ratio of 100 had been assumed, which is more consistent with the Y-J GAM, the horizontal permeability would increase approximately 20% when compared to an anisotropy ratio of 10. Based on the recovery test data, calculated horizontal permeabilities are as follows:

	Table 2 – Permeability Results								
Piezometer	Screened Unit	Test Type	Initial Test Head, Ho (feet below TOC)	Test Duration (hours)	Equilibrium Reached? (Y / N)	Recovery (%)	Horizontal Permeability (cm/sec)		
P-52S	Shallow, Wet Sandstone	Falling Head	11.63	24	Y	>99	3.21x10 ⁻⁵		
P-52D	Deep, Dry Sandstone	Falling Head	11.29	24	N	>58	6.91x10 ⁻⁷		
P-55D	Deep, Wet Sandstone	Falling Head	10.28	25.45	Y	>99	1.64x10 ⁻⁵		
P-58S	Shallow, Wet Claystone	Rising Head	25.38	43	Y	100	3.81x10 ⁻⁶		
P-58D	Deep, Dry Claystone	Falling Head	118.56	28	N	<1	NA		

Piezometer Test Data:

Piezometer recovery test data was obtained through February 14, 2015 for all five of the Phase V piezometers. Although recovery was not complete for all tests, the data for four piezometers was sufficiently complete for analysis. Semi-logarithmic plotting of the data indicated a classic or typical response with a good straight-line section in the middle of the signature. Points defining the ends of the straight lines on the graphs were picked from the tabular data. In addition, all data were tabulated and plotted in "normalized" form, i.e., the piezometer head reading at a given time was divided by the head reading at time zero. This procedure allows comparative

plotting of all piezometer tests to the same scale and is a useful tool to compare differences between geologic units, etc. See Figure 1.

Methodology:

Hvorslev's Variable Head Method "F" (Hvorslev, 1951) was selected for the preliminary analysis. Method F may provide a more realistic estimate for a "sand" unit between "confining layers." In addition, Method F provides a more conservative (higher) estimate of horizontal permeability than Method G. It should be noted that Method G is for a screen / filterpack in a uniform matrix without confining layers. Method G would also be potentially more applicable to the conditions at P-58S set in a shallow moist claystone interval. The Anisotropy ratio, **m**, was based on the typical assumption that horizontal permeability is at least 10 times the vertical permeability for bedded sedimentary materials. Note also that by assuming an anisotropy ratio

of 10 results in a higher calculated horizontal permeability than would be calculated assuming equal permeabilities in both the horizontal and vertical directions (therefore conservative for this purpose).

Piezometer Calculations:

Calculations were made using the filter pack length (recommended). All piezometers have the same construction dimensions. Applicable parameters (dimensional data and assumed anisotropy) used in the calculations are as follows:

- d (screen / riser diameter) = 2 inches = 5.08 cm
- **D** (borehole / filter pack diameter) = 6.5 inches = 16.51 cm
- L_s (screen length) = 10 feet = 304.8 cm
- L_{fp} (filter pack length) = 15 feet = 457.2 cm
- **k**_h (horizontal permeability) = to be calculated in cm/sec
- $\mathbf{k_v}$ (vertical permeability) = assumed to be $\mathbf{k_h}/10$
- **m** (transformation ratio) = $(k_h / k_v)^{1/2} = 3.162$
- $\mathbf{m} \cdot \mathbf{L}/\mathbf{D} = 58.38$ (based on screen length) or 87.56 (based on filter pack length)
- \mathbf{H} = piezometer reading relative to still water level (SWL) in cm at elapsed time, \mathbf{t}
- t = elapsed time corresponding to piezometer level reading in seconds

Since 2 x m x L/D >> 4, then Hvorslev's Equation [Method "F"] can be simplified to:

$$\mathbf{k}_h = ((d^2 \times ln \left(4 \times m \times \frac{L}{D}\right)) \div (8 \times L \times (\mathbf{t}_2 - \mathbf{t}_1))) \times ln(H_1 \div H_2)$$

Since the construction dimensions are the same for all piezometers, Hvorslev's Method F Equation, for the filter pack length based calculations, can be expressed as:

$$k_h = 0.041336676 \text{ cm x ln } (\mathbf{H_1/H_2}) \div (\mathbf{t_2} - \mathbf{t_1})$$

Table 3 – Horizontal Permeability Calculations								
Piezometer (Piez.)	Elapsed Time, t ₁ (minutes)	Elapsed Time, t ₂ (minutes	t_2-t_1 (sec)	Piez. Head, H ₁	Piez. Head, H ₂	H ₁ /H ₂	Method F k _h (cm/sec)	
P-52S	4	30	1,560	8.46	2.52	3.3571428	3.21x10 ⁻⁵	
P-52D	1025	1440	24,900	7.11	4.69	1.5159915	6.91x 10 ⁻⁷	
P-55D	8	60	3,120	7.65	2.22	3.4459459	1.64x10 ⁻⁵	
P-58S	60	120	3,600	10.9	7.82	1.3938619	3.81x10 ⁻⁶	

Calculations are summarized in the Table below:

Note that Hvorslev's Method G Equation, for the filter pack length based calculations, can be expressed as:

$$k_h = 0.03644527 \text{ cm} * \ln (H_1/H_2) \div (t_2 - t_1)$$

and, Hvorslev's Method F Equation, for screen length based calculations, can be expressed as:

$$k_h = 0.057713842 \text{ cm} * \ln (H_1/H_2) \div (t_2 - t_1)$$

3.1.4 Geotechnical Test Results

Surface material from where Test Pit 1 was backfilled after excavation, afforded an opportunity to observe landfill component materials in a "processed" state. Geotechnical testing, consisting of Atterberg Limits and Percent Passing the No. 200 Sieve, was conducted on two bulk samples of backfill from the Test Pit #1 location where they had weathered in place since the original construction in early 2012. The bulk samples collected represented two predominant types of material – Green Clay (CH) and Red Clay (CH) – resulting from the pit excavation. Plasticity Indices were 59 to 60 and Percent Passing the No. 200 Sieve ranged from 75 (green clay) to 98 (Red Clay). Significantly, exposure to weathering had completely transformed the clays from their original rock-like appearance to near-homogeneous soils. See Photos 1 and 2 above. The appearance of test pit backfill material is similar to the constructed pond dams and other drainage features on site.

Geotechnical testing was conducted on representative samples of materials encountered in all three Phase V borings. Results of the testing can be found in Appendix III-E.5-F and are as follows:

- Atterberg Limits (ASTM D4318) Thirty-two tests were conducted. With the exception of one non-plastic result, the remaining thirty one tests showed a consistent relationship when plotted on a Plasticity Chart commonly used as part of soil classification. The plotted data was consistent with previous Phases I-IV results. It is noted that all of the data plots well above the "A-Line" and only eight results had Liquid limits less than 50, i.e., the majority of the tested materials were highly plastic.
- Moisture Content (ASTM D2216) Thirty moisture content determinations were made. Twenty-six of the moisture content tests were on samples that were also tested for Atterberg Limits. A comparison of moisture contents to Plastic Limits indicated moisture contents averaging nine to ten percentage points below the corresponding Plastic Limit, i.e., the in situ moisture conditions are very dry and indicative of significant overconsolidation.
- Percent Passing the No. 200 Sieve (ASTM D422) Fourteen tests were conducted on samples that appeared to have some coarse-grained material. Percent passing the No. 200 sieve varied from 18 to 100 percent. Predictably, materials with a lower percentage passing the No. 200 sieve also exhibited the lower plasticities.
- Unconfined Compressive Strength (ASTM D2166) Four unconfined compression tests
 were run on undisturbed samples. Compressive strengths ranged from 31.1 to 124.9 tons
 per square foot (tsf). The unconfined compression test results confirm that the subsurface
 materials are heavily over-consolidated or pre-consolidated over geologic time. It is
 concluded that foundation strata are strong and incompressible.
- Permeability tests (ASTM D5084-10) Four tests were conducted on undisturbed samples to determine their vertical-axis permeability. Three test results indicated permeability (hydraulic conductivity) in the 10⁻⁹ to 10⁻¹¹ cm/sec range. A fourth test result was in the 10⁻⁷ range; however, testing of that sample was delayed in the laboratory and micro-cracking was observed in the test specimen that could have affected the test result.

4.0 Yegua-Jackson Boundary Definition

A common basis for distinguishing between the Yegua and Jackson has been to assign the lowest predominantly sandstone strata to the Jackson. A review of the NRCS Web Soil Survey "Parent Material Name" mapping indicated that soils on higher elevation areas to the north, east and south of the site were derived from sandstone. With respect to Figure 4 in Attachment III-E.5-A (III.E-5.A-4), these sandstone-derived soils are the Aguilares (AgB) and Copita (CpB) soils. Similarly, the NRCS indicates that soils in the lower elevation "salt flat" and areas to the west of the site were derived from shale. The previous Phase I-IV investigations and associated site reconnaissance had established that the soils in the flat areas dominating the site are clayey in nature to a significant depth with only a few isolated sand units. During the Phase V investigation, a site reconnaissance was conducted in the elevated areas immediately to the north, east, and south of the salt flat area. The site reconnaissance of those elevated areas found a distinct sandy character to the surface soils and a significant change in vegetation compared to the lower elevation "salt flat" that covers most of the PERC site.

Based on the Phase V site reconnaissance, evidence suggests that most of site is located just below the Yegua-Jackson boundary (in the Yegua formation) due to surface erosion and remnants of the Jackson that surround the site at higher elevations.

5.0 Subsurface Water Quality Information

In July 2010, subsurface water samples from Phase I and II borings B-1, B-2, B-6, B-10, B-13, B-18, and the deep ranch well, were analyzed for:

- Aluminum
- Chromium
- Copper
- Iron
- Manganese
- Silver
- Zinc
- Chloride
- Fluoride
- Nitrate as N
- Sulfate
- pH
- Specific Conductance
- Total Dissolved Solids

With the exception of the deep ranch well with a Total Dissolved Solids (TDS) content of 2,100 mg/L, the remaining shallow subsurface water samples had TDS in the range of 34,600 to 66,600 mg/L. Chloride ranged from 22,600 to 37,800 mg/L for the shallow subsurface water samples.

In March 2011, additional subsurface water samples from Phase I and II borings B-1, B-2, B-6, B-10, B-11, B-13, B-18, B-24, B-26, B-27, and surface water samples from Burrito Tank (T-1) and the unnamed tank (T-2) above Burrito Tank, were analyzed for:

- Fluoride
- Chloride
- Nitrate as N
- Sulfate
- Specific Conductance
- pH

The shallow subsurface water samples had Chloride ranging from 12,000 to 31,800 mg/L.

A commonly used classification system for water based on TDS and Conductivity is as follows:

- Fresh <1,000 mg/L TDS
- Brackish $\ge 1,000 \text{ to } < 10,000 \text{ mg/L TDS}$
- Saline $\ge 10,000$ to < 30,000 mg/L TDS
- Brine \geq 30,000 mg/L TDS
- Sea Water ~55,000 μmhos/cm

Based on the above classification system, the shallow subsurface water would be classified as saline or brine and the deep ranch well would be classified as brackish based on the July 2010 analysis. Only the two surface water bodies contain water that could be considered fresh.

Additionally, sea water is anticipated to have conductivity values of around 55,000 µmhos/cm. Except for the ranch well, conductivity values from the subsurface water tests for July 2010 ranged from 60,300 to 114,000. Values for subsurface water in March 2011 ranged from 55,100 to 84,100. See results of the subsurface water quality testing in Appendix III-E.5-G.

6.0 CONCLUSIONS

The Phase V subsurface investigation was successful in meeting the desired objectives. The following conclusions have been determined from this effort.

Drilling and sampling – With a single exception, air-rotary drilling was successfully used to both core subsurface materials and to drill boreholes for piezometer installation. The use of air rotary without any water addition allowed careful evaluation of the presence and quantity of subsurface water. Mud rotary coring was required in one boring due to problems associated with a shallow perched water table. Sampling with a double-tube core barrel recovered undisturbed samples (three-inch diameter core) for detailed logging and geotechnical testing purposes.

Subsurface materials – The borings demonstrated that predominant Yegua-Jackson materials were highly plastic, moderately hard, heavily overconsolidated claystones with thin horizontal silty/sandy partings down to the approximate 150-foot completion depths of the borings. The claystones were fissured with occasional slickensides and fractures. Some isolated sandstone units were encountered. With the exception of some moist zones encountered near the Yegua-Jackson contact with surficial Recent-Pleistocene deposits, i.e, an intermittent perched water table location, and some moist zones associated with either fractured claystone and/or sandstone units, the recovered materials were dry.

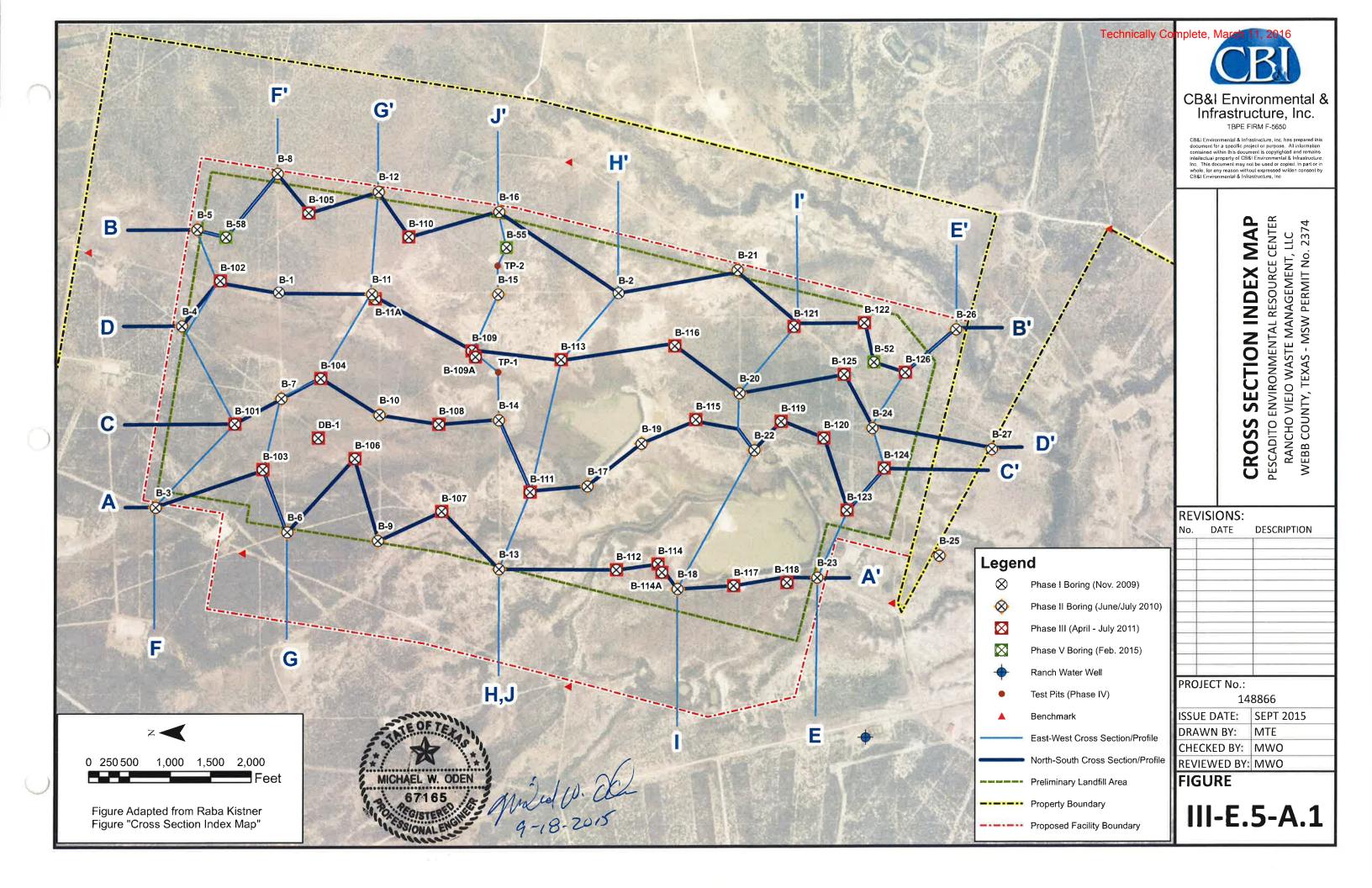
Subsurface water — Subsurface water was encountered during drilling at shallow depth in association with a shallow perched water table near the Yegua-Jackson contact with surficial Recent-Pleistocene deposits. There was a limited occurrence of subsurface water at depth associated with either fractured claystone and/or sandstone units. Both shallow (S) and deep (D) piezometers were installed to further evaluate the encountered subsurface water and to obtain estimates of subsurface permeability. To ensure annular seal integrity, bentonite grout was placed using a grout pump and tremie for the three deep piezometers and for the deeper of the two shallow piezometers.

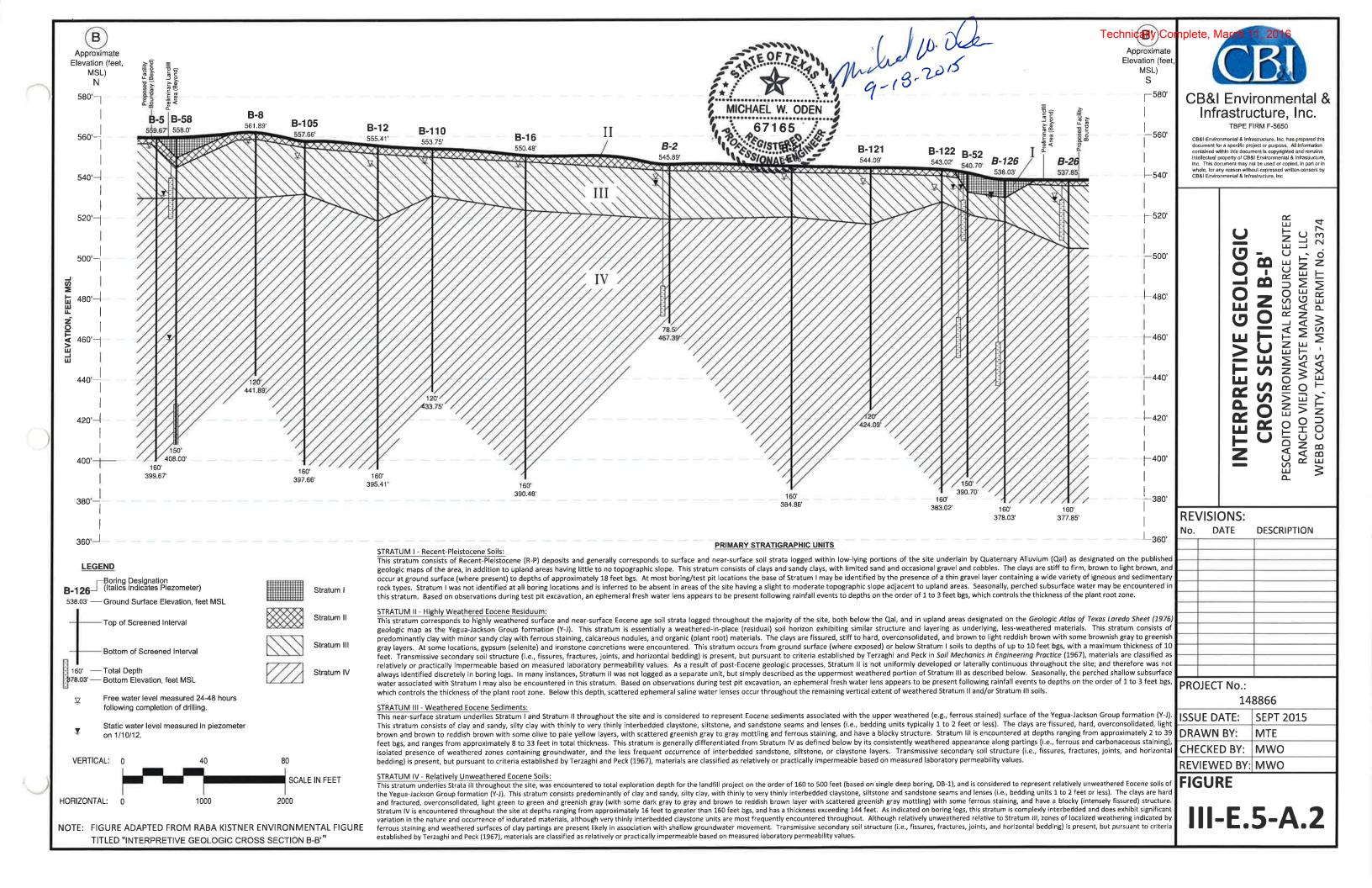
Geotechnical testing — Representative samples of subsurface materials were tested in the laboratory for classification properties, moisture content, permeability, and compressive strength. The classification, moisture content, and compressive strength results were consistent with the description of subsurface materials made in the field. Falling head and/or rising head permeability tests were conducted in all piezometers to provide additional information. The field permeability test results were consistent with the laboratory results and demonstrate poorly permeable and/or practically impervious subsurface conditions. The unconfined compression test results confirmed the subsurface materials are heavily over-consolidated or pre-consolidated over geologic time and demonstrated that foundation strata are strong and incompressible.

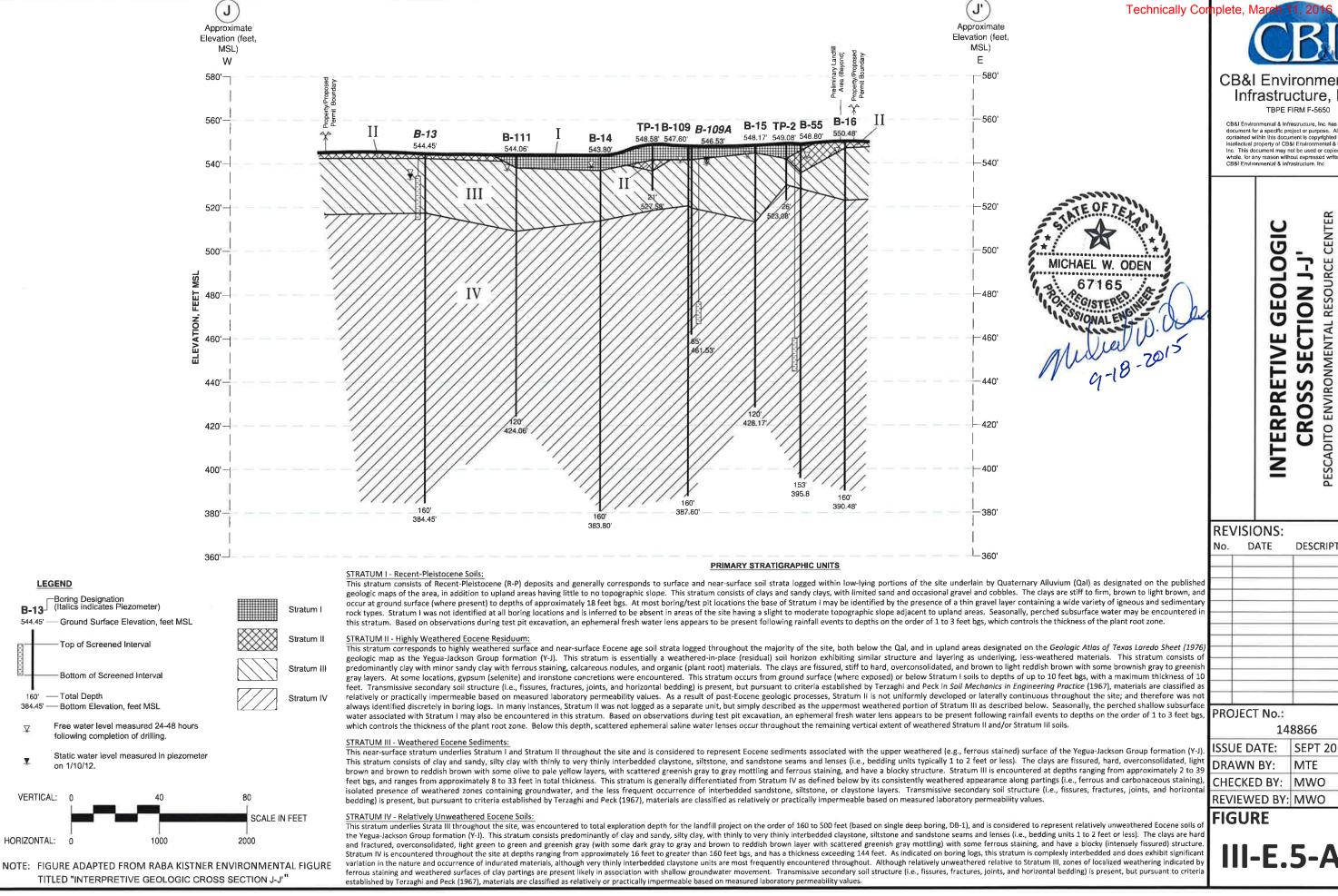
Consistency with results from previous Phase I-IV investigations — Phase V confirmed the predominance of highly plastic claystone materials in the Yegua-Jackson at the site. Geotechnical classification and moisture content testing results were also consistent. Phase V laboratory and piezometer permeability testing was consistent with results from piezometer testing of Phase II and III piezometers and demonstrate poorly permeable and/or practically impervious subsurface conditions. As expected, Phase V permeability testing confirmed that Phase II and III laboratory permeability testing was apparently impacted by the poor quality of recovered Roto-Sonic samples. The results of the Phase V investigation, earlier Phase IV test pit investigation, and Phase I-III geotechnical testing, all indicate that subsurface conditions are predominantly dry and the term "moist" as applied to the strata descriptions on the Phase II and III boring logs was apparently an artifact of water addition during Roto-Sonic drilling.

Both the earlier Phase IV test pit investigation and this Phase V investigation indicate minimal presence and quantity of subsurface water – particularly at depth. The results of the Phase II and III investigation could be interpreted to indicate more subsurface water is present and less random in occurrence. Again, it is believed this inconsistency can be traced to the consequences associated with Sonic drilling and the use of bentonite chips in the piezometers as opposed to bentonite grout. All investigations to date indicate the potential for a shallow perched water table, containing saline water, associated with the Yegua-Jackson contact with surficial Recent-Pleistocene deposits that appears to be partially recharged by the perennial surface water bodies. Regardless, all investigative results confirm that subsurface materials are poorly permeable to

practically impervious and are incapable of transmitting significant quantities of subsurface water. The investigative results are consistent with the Yegua-Jackson Groundwater Availability Model (TWDB, 2010) calibrated input parameters.


III-E.5-A

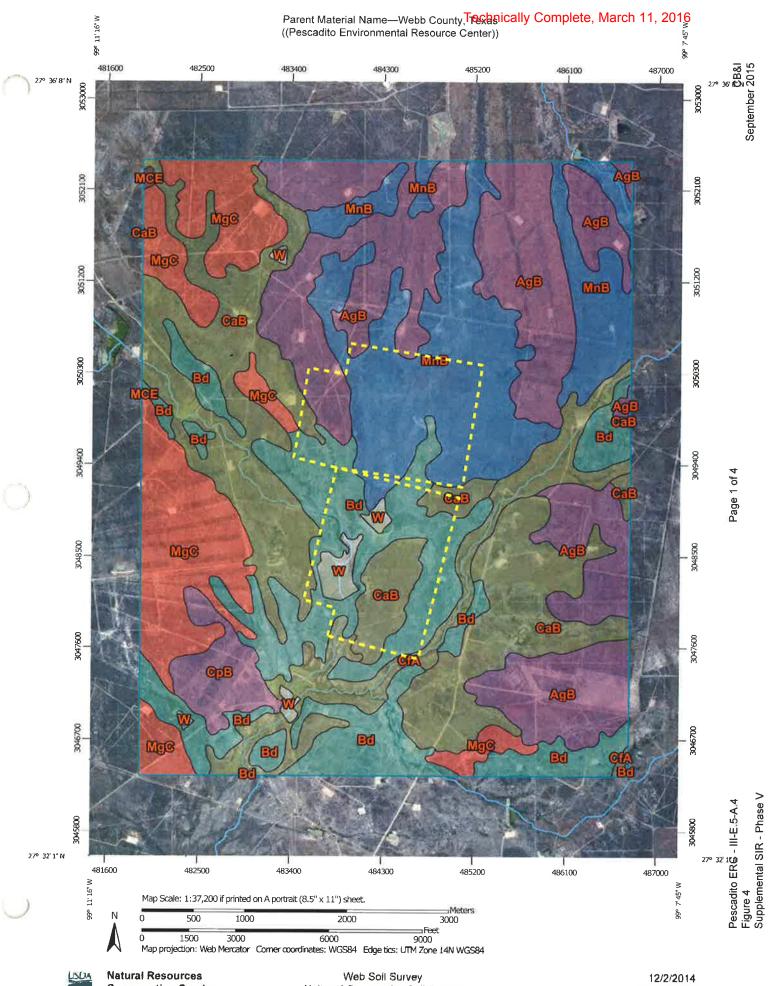

Figures


III-E.5-A.1 Cross Section Index Map	1
III-E.5-A.2 Interpretive Geologic Cross Section B-B'	.2
III-E.5A.3 Interpretive Geologic Cross Section J-J'	3
III-E.5-A.4 Webb County Soil Survey (Pages 1-4)	4

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

CB&I Environmental & Infrastructure, Inc.

CB&I Environmental & Infrastructure, Inc. has prepared this document for a specific project or purpose. All Information contained within this document is copyrighted and remains intellectual property of CB&I Environmental & Infrastructure, Inc. This document may not be used or copied, in part or in whole, for any reason without expressed written consent by CB&I Environmental & Infrastructure, Inc.


- MSW PERMIT No.

RANCHO VIEJO WASTE MANAGEMENT,

	No.	DATE	DESCRIPTION
hed			
and ary			
d in			
76)	_		
of	_		
nish	_		
10	_		
l as not			
ace	-		
I	DDC	HECT NO	

SEPT 2015

III-E.5-A.3

Parent Material Name—Webb County, Texas ((Pescadito Environmental Resource Center))

This product is generated from the USDA-NRCS certified data as distance and area. A projection that preserves area, such as the imagery displayed on these maps. As a result, some minor shiffing Maps from the Web Soil Survey are based on the Web Mercator Dec 12, 2010—Jun The orthophoto or other base map on which the soil lines were Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Soil map units are labeled (as space allows) for map scales projection, which preserves direction and shape but distorts compiled and digitized probably differs from the background Natural Resources Conservation Service Albers equal-area conic projection, should be used if more The soil surveys that comprise your AOI were mapped at Please rely on the bar scale on each map sheet for map accurate calculations of distance or area are required. Web Mercator (EPSG:3857) MAP INFORMATION Version 11, Sep 29, 2014 Date(s) aerial images were photographed: Webb County, Texas of map unit boundaries may be evident. of the version date(s) listed below. Coordinate System: Survey Area Data: Soil Survey Area: 1:50,000 or larger. Source of Map: measurements. 1:31,700. Aerial Photography Local Roads Background residuum weathered from calcareous, saline, loamy residuum weathered from Not rated or not available calcareous, saline clayey calcareous, saline, clayey residuum weathered from residuum weathered from calcareous, saline, loamy Not rated or not available saline loamy alluvium saline loamy alluvium Streams and Canals Interstate Highways MAP LEGEND calcareous clayey calcareous loamy Major Roads US Routes sandstone Soil Rating Points alluvium alluvium Rails Water Features Transportation • ? ŧ residuum weathered from residuum weathered from residuum weathered from calcareous, saline, clayey residuum weathered from calcareous, saline, loamy residuum weathered from calcareous, saline, clayey calcareous, saline clayey Not rated or not available calcareous, saline clayey Area of Interest (AOI) saline loamy alluvium calcareous clayey calcareous clayey calcareous loamy calcareous loamy Soil Rating Polygons sandstone sandstone Area of Interest (AOI) alluvium alluvium alluvium alluvium Soil Rating Lines } Soils

Parent Material Name

	Parent Material Name— Su			
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AgB	Aguilares sandy clay loam, 0 to 3 percent slopes	calcareous loamy residuum weathered from sandstone	1,672.0	23.2%
Bd	Brundage fine sandy loam, 0 to 1 percent slopes, occasionally flooded	saline loamy alluvium	1,255.0	17.4%
СаВ	Catarina clay, 0 to 2 percent slopes	calcareous, saline clayey alluvium	1,477.5	20.5%
CfA	Catarina clay, occasionally flooded	calcareous, saline clayey alluvium	414.9	5.8%
СрВ	Copita fine sandy loam, 0 to 3 percent slopes	calcareous loamy residuum weathered from sandstone	175.4	2.4%
MCE	Maverick-Catarina complex, gently rolling	calcareous, saline, clayey residuum weathered from shale	5.9	0.1%
MgC	Moglia clay loam, 1 to 5 percent slopes	calcareous, saline, loamy residuum weathered from shale	918.4	12.8%
MnB	Montell clay, 0 to 3 percent slopes	calcareous clayey alluvium	1,208.9	16.8%
W	Water		72.8	1.0%
Totals for Area of Inter	act		7,200.8	100.0%

Description

Parent material name is a term for the general physical, chemical, and mineralogical composition of the unconsolidated material, mineral or organic, in which the soil forms. Mode of deposition and/or weathering may be implied by the name.

The soil surveyor uses parent material to develop a model used for soil mapping. Soil scientists and specialists in other disciplines use parent material to help interpret soil boundaries and project performance of the material below the soil. Many soil properties relate to parent material. Among these properties are proportions of sand, silt, and clay; chemical content; bulk density; structure; and the kinds and amounts of rock fragments. These properties affect interpretations and may be criteria used to separate soil series. Soil properties and landscape information may imply the kind of parent material.

For each soil in the database, one or more parent materials may be identified. One is marked as the representative or most commonly occurring. The representative parent material name is presented here.

Pescadito ERC - III-E.5-A.4

Page 4 of 4

Pescadito ERC - III-E.5-A.4 Figure 4 Supplemental SIR - Phase V

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Lower

III-E.5-B Phase V Logs of Borings

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

SURFACE ELEVATION:

540

PROJECT:

Technically Complete, March 11, 2016, HEET I OF 8 Pescadito Environmental Resource Center

NORTHING: EASTING:

17090901 771370

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB

B-52

			8						
Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
0-	540	777	Dark Brown FAT CLAY(CH), trace fine						
1-	- 539		sand and silt, firm to stiff, high plasticity, moist, moderately saline and calcareous, blocky structure.	СН			0.75		(0-11'): Blind Drilled. Logged
2-	- 538						1.75		based on drilling cuttings observations
3-	- 537		Light Brown FAT CLAY(CH), little to some						during installation of 8" PVC surface
4-	- 536		fine sand and silt, stiff, high plasticity, moist, moderately saline and calcareous, blocky structure.				1.25		casing (0-10.5'). 8" PVC casing later removed
5-	- 535				Dlind				from boring and reinstalled (0-20').
6-	- 534			СН	Blind Drill (0-11') Rec=106"				
7-	- 533								
8-	- 532								
9-	- 531		Trace subangular fine gravel (17mm), black coal gravel, and dark gray clay.						
10 —	- 530		Hard, Brown FAT CLAYSTONE(CH), trace fine sand, dry, aphanitic to very fine	СН					
11-	- 529		grained, massive, well indurated, strongly calcareous, slightly saline, slightly						
12-	- 528		Weathered. Hard, Pale Olive with Pale Brown FAT	СН					
13-	- 527	111	CLAYSTONE(CH), yellowish brown with strong brown iron staining, trace fine sand, dry, aphanitic to very fine grained, blocky,						
14-	- 526		well indurated, strongly calcareous, slightly saline, slightly weathered.		CB-1 (11-17') Rec=36"			19.44%	
15	- 525		Hard, Pale Brown to Light Yellowish Brown with Light Olive Brown CLAYEY SANDSTONE(SC), little yellowish brown		Rec=36"				
16-	- 524		iron staining, trace manganese infilling vertical fracture (13.1-14'), dry, fine	80					
17-	- 523		grained, massive, well indurated, strongly calcareous, slightly saline, slightly weathered.	SC)			(17-23');Low recovery, Based
18-	- 522								on drilling observations, it
19	- 521		trace chert gravel.		CB-2 (17-23') Rec=8"			0%	appeared that the core barrel bit had
20-		12	(Continued on next page)	,					ground away the sandstone.

PRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air\Water Rotary 3"LD,4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

REMARKS 6.25" Dia, Drag Bit(0-11");8,75"Dia, Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

07-08-2015 T

octs/2013/Pescadito Landfill/Boring Logs/B-52.bor

Technically Complete, March 11, 2016 HEET 2 OF 8

SURFACE ELEVATION:

540

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: 17090901 EASTING:

771370

PROJECT NO.: 148866

BORING NO.

LOGGED BY: RWB

B-52

Second S	
Continued from previous page) Same, CLAYEY SANDSTONE(SC). SC CB-2 (17-23') Rec=8" 23 - 517 24 - 516 25 - 515 Same, CLAYEY SANDSTONE(SC). SC CB-3 (23-25') Rec=0" Same, CLAYEY SANDSTONE(SC). CB-2 (17-23') Rec=8" O% driller observing appearance of the continuation of the continu	EMARKS
22 — 518 23 — 517 24 — 516 25 — 515 26 — 514 27 — 513 28 — 512 29 — 511 30 — 510 CB-2 (17-23') Rec=8" SC CB-3 (23-25') Rec=0" SC CB-3 (23-25') Rec=0" CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" SP Rec=28" GB-4 (25-29') Rec=28" 14.58% CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" CB-5 CB-5 CB-5 CB-5 CB-5 CB-5 CB-5 CB-5 CB-7 CB-8 CB-8 CB-8 CB-9 CB-	
22 — 518 23 — 517 24 — 516 25 — 515 26 — 514 27 — 513 28 — 512 29 — 511 30 — 510 SC CB-3 (23-25) Rec=8" SC CB-3 (23-25) Rec=0" SC CB-3 (23-25) Rec=0" CB-4 (25-29) Rec=28" SP Rec=28" 14.58% CB-4 (25-29) Rec=28" SP Rec=28" 14.58% CB-4 (25-29) Rec=28" CB-5 CB-5	
24 — 516 25 — 515 26 — 514 27 — 513 Barre, CLAYEY SANDSTONE(SC). CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" Altard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28 — 512 29 — 511 30 — 510 SC CB-3 (23-25') Rec=0" CB-4 (25-29') Rec=28" SP Rec=28" CB-4 (25-29') Rec=28" CB-5 CB-5 CB-6 CB-6 CB-7 CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-5 CB-6 CB-7 CB-7 CB-7 CB-7 CB-7 CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-5	
24 — 516 25 — 515 26 — 514 27 — 513 28 — 512 29 — 511 30 — 510 Same, CLAYEY SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-4 (25-29') Rec=28" 14.58% Rec=28" Rec=28" CB-5 CB-6 CB-7 CB	5'):No
Same, CLAYEY SANDSTONE(SC). Same, CLAYEY SANDSTONE(SC). CB-4 (25-29') Rec=28" Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-4 (25-29') Rec=28" 14.58% CB-5 CB-6 CB-6 CB-7 CB-	ery. Based
Same, CLAYEY SANDSTONE(SC). Cutting appead core by ground sands CB-4 (25-29') Rec=28" Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-4 (25-29') Rec=28" CB-4 (25-29') Rec=28" CB-5	's/geologist's vations and
27 — 513 28 — 512 Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28'');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-4 (25-29') Rec=28" CB-5	ig of drilling gs, it
27 513 28 512 Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-4 ((25-29') Rec=28" CB-4 ((25-29') Rec=28" CB-5	ared that the parrel bit had
Hard, Greenish Gray SANDSTONE, poorly graded, dry, fine grained, massive, well indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-5	d away the tone.
indurated, strongly calcareous, slightly saline, fresh. (28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-5	
(28-28.2');Hard, Dark Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, strongly cemented, moderately calcareous, slightly saline, fresh. CB-5	
strongly cemented, moderately calcareous, slightly saline, fresh.	
31 - 509 (28.2-32') Hard, Reddish Brown with Light Reddish Brown and trace Greenish Gray (29-32') Rec=19"	
and White FAT CLAYSTONE(CH), dry, aphanitic to very fine grained, laminated,	
well indurated, moderately calcareous, slightly saline, slightly weathered, 45 degree compression fracture (28.6-29').	
(32-38.8') Hard, Reddish Brown with Light	
Reddish Brown and little Greenish Gray FAT CLAYSTONE(CH), trace silt and light CB-6 Gray calcareous material trace gyrsum (32-37') 23.33%	
gray calcareous material, trace gypsum, dry, aphanitic to very fine grained, massive to blocky, well indurated, slightly	
36 — 504 calcareous, slightly saline, slightly weathered.	
37 — 503 weathered.	
38 - 502	
CB-7 (37-42') 0%	
Hard, Gray with little Light Gray FAT CLAYSTONE(CH), trace fine sand, dry,	
aphanitic to very fine grained, massive, well aphanitic to very fine grained, massive, well indurated, highly calcareous, (Continued) ORILLING CONTRACTOR: Andrews & Foster WATER LEVEL (FT.) REMARKS	

07-08-2015 T:\Projects\2013\Pescadito Landfil\Boring Logs\B-52.bor

DRILLING CONTRACTOR, Anturews & Fusion DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'), Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

NORTHING:

EASTING:

540

17090901

771370

PROJECT:

Technically Complete, March 11, 2016 HEET 3 OF 8 Pescadito Environmental Resource Center

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866

BORING NO.

LOGGED BY: **RWB**

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
40-	- 500	111	(Continued from previous page)	ĺ			ľ		
41-	- 499		(Cont'd) FAT CLAYSTONE (CH), slightly saline, fresh.	СН	CB-7 (37-42') Rec=60"				
42-	498				1.00 00				
	- 497 - 496		Hard, Weak Red with Reddish Brown and trace Greenish Gray FAT CLAYSTONE(CH), trace light gray highly calcareous silt, trace slickenslides, dry, aphanitic to very fine grained, massive to trace blocky, well		CB-8				
45-	- 495		indurated, moderately calcareous, slightly saline, fresh.	СН	(42-47') Rec=60"			93.33%	
0.2	- 494								
	- 493 - 492		Hard, Dark Gray to Gray FAT CLAYSTONE(CH), trace to little light gray highly calcareous material, dry, aphanitic to very fine grained, massive, well indurated,						
49-			moderately calcareous, saline, fresh.	СН					
	- 490 - 489				CB-9 (47-53') Rec=50"			49.3%	
52—	- 488		(51.5-53');Hard, Dark Reddish Brown with Dark Greenish Gray FAT CLAYSTONE(CH),						
53	- 487		dry, aphanitic to very fine grained, massive, well indurated, slightly calcareous and saline, fresh.						
54—	1		(53-59.5');Hard, Greenish Gray to Dark Greenish Gray with little Reddish Brown FAT CLAYSTONE(CH), trace to little silt,						
55	- 485		trace fine sand, trace very dark gray staining in horizontal fractures (@54',54.9', 55.3', and 55.5'), trace vertical fractures	СН					
56			(53-53.5'), dry, aphanitic to very fine grained, massive to thinly bedded, well		CB-10 (53-60')			82%	
57			indurated, slightly to moderately calcareous, slightly saline, slightly weathered.		(53-60') Rec=81"			UZ /0	
58									
59	- 481								

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air/Water Rotary
3"[.D.;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS
6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

07-08-2015 T

Technically Complete, March 11, 2016 HEET 4 OF 8

SURFACE ELEVATION:

540

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

NORTHING: EASTING:

17090901 771370

PROJECT NO.: 148866 LOGGED BY:

RWB

BORING NO

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
60	- 480	111	(Continued from previous page)	ı		1	li ii		Y
61 62			Hard, Dark Greenish Gray to Greenish Gray with Light Greenish Gray LEAN CLAYSTONE(CL), trace to little fine sand, dry, very fine grained, very thinly to medium	CL					
63-	477	111	bedded, well indurated, moderately calcareous and saline, fresh.	СН					
037	- 4//	44	Hard, Dark Greenish Gray to Greenish Gray FAT CLAYSTONE(CH), trace silt, dry,	CH	_				
64			aphanitic, massive with little blocky structure, well indurated, slightly calcareous and saline, fresh.						
65 -			Moderately hard to hard, Dark Reddish Brown with trace Greenish Gray and Grayish Brown FAT CLAYSTONE(CH), trace silt, dry, aphanitic to very fine grained,		CB-11 (60-70') Rec=84"			36.7%	
67-			trace slickenslides, massive to blocky structure, moderately to well indurated, slightly calcareous and saline, trace	СН		1.			
68-			horizontal and vertical fractures, fresh.						
70	- 470								
71 –			Same, hard, well indurated, moderately calcareous and saline.						
72-			Hard, Weak Red with Greenish Gray and Grayish Brown FAT CLAYSTONE(CH), dry,	011	CB-12 (70-74') Rec=43"			50%	
73 -			very fine grained to aphanitic, massive, well indurated, slightly calcareous and saline, fresh.	СН					
75-			Hard, Weak Red to Dusky Red with little Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic to very fine grained, massive with						
76 —	- 464		slightly blocky structure, well indurated, slightly calcareous and saline, fresh.	СН					
77 —	- 463	///	Hard, Reddish Brown with little Greenish Gray LEAN CLAYSTONE(CL), trace fine		CB-13 (74-80')			41.67%	
78 -	- 462 - 461		sand and calcareous nodules, dry, very fine grained to aphanitic, massive with slight blocky structure, well indurated, moderately calcareous to saline, fresh.	CL	Rec=59"				
80-	,	111	(Continued on next page)					en	
DRILLI	NG ME	THOD	CTOR: Andrews & Foster): Air/Water Rotary 3"I.D.;4,875"O.D. Double Tube Core Barrel ENT: Gardner Denver 15W Truck Mounted Drill Rig		REMARKS 6.25" Dia. Drag I (0-20');Installed Boring was trem from 0-139' on 1.	8" PVC ca ie-grouted	sing (0-20'); with Quik-C	Core(11-150 frout bentoni)'),

07-08-2015 T:\Projects\2013\Pescadito\Landfil\Boring\Logs\B-52\bor

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

EASTING:

540

771370

PROJECT: CLIENT:

Technically Complete, March 11, 2016 HEET 5 OF 8 Pescadito Environmental Resource Center

Rancho Viejo Waste Management, LLC

NORTHING: 17090901

PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

B-52

							_		
Depth in Feet	Surf, Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
80-	460	111	(Continued from previous page)	1			10		
81-	459	19	Same, LEAN CLAYSTONE(CL).						
82-	458			CL					
83-	457								
84-	456	2							
			Hard, Reddish Brown with Greenish Gray (84-84.2') grading to Greenish	СН					
85-	455		Gray(84.2-84.8') FAT CLAYSTONE(CH), trace white silty calcareous material, dry,		CB-14 (80-90') Rec=120"			100%	
86-	454		aphanitic to very fine grained, blocky, well indurated, trace very fine grained sand,	sc	100-120				
87-	453	4	mica and pyrite, slightly to highly calcareous, slightly saline, fresh.						
)	450		Hard, Greenish Gray CLAYEY SANDSTONE(SC), trace mica and pyrite,	СН					
88-	452		dry, fine grained to very fine grained, massive, well indurated, slightly calcareous						
89-	451		and saline, fresh. Hard, Greenish Gray to Light Greenish Gray	СН					
90-	450		with trace Gray FAT CLAYSTONE(CH) with little interbedded sandstone, trace						
91 -	449		calcareous concretions, trace pyrite, dry, very fine grained, laminated bedding, slightly	СН					
313	440		to highly calcareous, saline, vertical fracture.						
92-	448	111	Hard, Reddish Gray to Weak Red with trace						
93-	447		Greenish Gray FAT CLAYSTONE(CH), dry, very fine grained to aphanitic, laminated,						
94-	446		well indurated, moderately calcareous and saline, vertical fracture.						
			Hard, Reddish Brown with Greenish Gray FAT CLAYSTONE(CH), trace highly	CL					
95-	+ 445	89	calcareous material, dry, aphanitic, blocky to massive, well indurated, slightly to		CB-15 (90-100') Rec=111"			84.16%	
95 — 96 — 97 — 98 — 99 —	444		moderately calcareous, saline. Hard, Light Reddish Brown with trace		1100-111				
97-	443		Greenish Gray LEAN CLAYSTONE(CL), dry, aphanitic, massive, well indurated, slightly						
00	442	1	calcareous and saline, fresh.	CL					
90-	T 442	777	Hard, Greenish Gray with light Greenish Gray LEAN CLAYSTONE(CL), dry, very fine	CL.					
99-	441		grained, laminated to thinly bedded, well indurated, moderately calcareous, saline,	СН					
₁₀₀ _		11/1	fresh.	1				Į,	

07-08-2015

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS
6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 HEET 6 OF 8

SURFACE ELEVATION: NORTHING:

540

17090901

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

EASTING: 771370 PROJECT NO. 148866

RWB

LOGGED BY:

BORING NO.

B-52

Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100 -	- 440	111	(Continued from 98.5') Moderately hard,	r F		18 19	N 1	0 5	
101-			Dark Reddish Gray with little Reddish Brown and Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic, blocky, moderately indurated, slightly calcareous and saline, slightly weathered.	СН					
"-	,,,,		Moderately hard, Dark Reddish Gray with						
103-			little Greenish Gray and trace Reddish Brown FAT CLAYSTONE(CH), 45 degree angular fractures with slickenslides, dry,						
104-			aphanitic, blocky, moderately indurated, slightly calcareous to saline, slightly weathered.		90.40				
105-			Moderately hard to hard, Reddish Brown with Greenish Gray and trace Dark Reddish Gray FAT CLAYSTONE(CH), 45 degree		CB-16 (100-110') Rec≃93"			36,67%	
107-			angular fractures with slickenslides, dry, aphanitic, blocky, moderately indurated, slightly calcareous to saline, slightly						
108-	432		weathered. (107-110'); hard, well indurated.	СН					
109-	431								
110-	430		(110-113'); hard, well indurated.						
111-	429								
112-	- 428								
113-	427	#	Hard, Reddish Brown with Greenish Gray		-				
114-	- 426		FAT CLAYSTONE(CH), little silt, trace fine sand, dry, very fine grained to aphanitic, massive, well indurated, slightly calcareous	СН	00.47		1		i i
115-	425		and saline, fresh. Hard, Dark Reddish Brown with Greenish		CB-17 (110-119') Rec=82"			54.63%	
115- 116- 117- 118- 119- 120-	- 424		Gray FAT CLAYSTONE(CH), trace white to light gray calcareous nodules and limestone concretions, dry, aphanitic, massive with						
117-	423		slight blocky structures, well indurated, slightly to highly calcareous and slightly	СН					
118-	422		saline, slightly weathered.						
119-	421	111	FAT CLAYSTONE(CH).						
120-			(Continued on next page)	СН	CB-18 (119-129') Rec=60"	r) s)		Cr il	s
DKILL	ING ME	THOE	CTOR: Andrews & Foster D: Air/Water Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel ENT: Gardner Denver 15W Truck Mounted Drill Rig		REMARKS 6.25" Dia. Drag 1 (0-20');Installed Boring was trem from 0-139' on 1	8" PVC ca ie-grouted	sing (0-20'); with Quik-C	Core(11-150 frout bentoni)').

07-08-2015 T:\Projects\2013\Pescadito Landfil\Boring Logs\B-52 bor

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

540

PROJECT:

Technically Complete, March 11, 2016 HEET 7 OF 8 Pescadito Environmental Resource Center

NORTHING:

EASTING:

17090901 771370

CLIENT:

Rancho Viejo Waste Management, LLC

LOGGED BY:

PROJECT NO. 148866

RWB

BORING NO.

	Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
	120 —	- 420	111	(Continued from 119')	1	1			Y i	1
	121 —	- 419		Hard, Dark Reddish Brown to Reddish Brown with Greenish Gray stratified FAT CLAYSTONE(CH), trace to little silt and fine						
	122 -			sand, dry, aphanitic to very fine grained, medium bedded with trace laminations, well indurated, moderately to highly calcareous, saline, slightly weathered to fresh.						
	123	417		Same, Siightly weathered to fresh.	CH					
	124 —	- 416			CIT					
	125 —	- 415				CB-18 (119-129') Rec=60"			0%	
	126 —	- 414								
į.	127 —	- 413								
	128-	- 412		Moderately hard to hard, Dark Greenish Gray to Greenish Gray with trace Dark Gray FAT CLAYSTONE(CH), trace pyrite,						
	129 —	- 411		trace light gray highly calcareous silt, dry, aphanitic, blocky, well indurated, slightly						(129-131');No
	130 —	- 410		calcareous, saline, fresh.	СН	CB-19 (129-131')			0%	recovery. Logged based on drilling observations and
	131 —	- 409				`Rec=0" ´				cuttings. It appeared that the
	400	400								core barrel bit ground away the
	132 —	- 408								claystone.
	133 —	- 407		Hard, Dark Reddish Brown with Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic,	СН					
	134—	- 406		massive with slight blocky structure, well indurated, slightly calcareous, saline, fresh.	ļ ———					
Js/B-52,bor	135-	- 405		Hard, Dark Greenish Gray to Greenish Gray with trace Dark Reddish Brown and Gray FAT CLAYSTONE(CH), trace white highly	СН	CB-20				
Boring Log	136 —	- 404		calcareous nodules, massive with slight low angle and horizontal fractures with slickenslides, well indurated, slightly	017	(131-141') Rec=112"			45.0%	
ndfill	137 —	- 403	///	calcareous, slightly weathered. Hard, Dark Gray to Gray with little Greenish						
acts\2013\Pescadito Landfil\Boring Logs\B-52.bor	138-	- 402		Gray LEAN CLAYSTONE(CL), little silt, trace fine sand, trace calcareous nodules, dry, aphanitic to very fine grained, massive, well	CL					
013/Pe	139-	- 401	32	indurated, mildly to highly calcareous, saline, fresh.						
3cts/2	140 —		111	(Continued on next page)			j,	,		
1	RILLI	NG CON	JTRA	CTOR: Andrews & Foster WATER LEVE	L (FT.)	REMARKS				

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air/Water Rotary 3"LD.;4.875"O.D. Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

WATER LEVEL (FT.)

REMARKS 6,25" Dia, Drag Bit(0-11');8,75"Dia, Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 HEET 8 OF 8

SURFACE ELEVATION:

540

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING: 17090901 771370

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB

B-52

		erent Cha								D 32
Depth in Feet	Surf. Elev. 540	Strata	DESCRIPTIO	ON	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140 —	- 400	111	(Continued from previous pag Same, LEAN CLAYSTONE(C		CL	CB-20				``````````````````````````````````````
141-	- 399		calcareous Light Gray limesto concretions(140-140.6').	ne		(131-141') Rec=112"	0			
142 —	- 398		Hard to moderately hard, Red Light Reddish Brown, and Dar	rk Reddish						
143-	- 397		Gray with Greenish Gray FAT CLAYSTONE(CH), alternating beds, trace white to light gray	thin to medium	СН					
144-	- 396		calcareous limestone, trace to fine sand, dry, aphanitic to ver	little silt, trace ry fine						
145—	- 395		grained, moderately to well ind slightly calcareous, saline, slig weathered, massive with little	htly		CB-21				
146-	- 394		structure. Hard, Gray grading to Dark Gray grading to Dark Gray grading to Dark Gray grading to Dark Gray Gray Gray Gray Gray Gray Gray Gray	ray with little		(141-150') Rec=87.5"			54.16%	
147.—	- 393		Greenish Gray CLAYEY SANI dry, very fine grained, massive indurated, high calcareous, fre	e, well	sc					v S
148 –	- 392		,g.,g.,		30			n 1	¥ :	
149-	- 391		(149-150); little dark reddish b	rown.						
150 —	- 390	32	End of Boring @150'							
151 —	- 389									
152-	- 388									
153-	- 387									
154-	- 386									
155 —	- 385									
156 —	- 384									
157-	- 383									
158-	- 382									
159-	- 381									
160 —										=
DRILLI DRILLI	NG CO	NTRA THOL	CTOR: Andrews & Foster D: Air\Water Rotary	WATER LEVE	L (FT.)	REMARKS 5.25" Dia Drag 1	Bit(0-11'):	8.75"Dia. Tr	icone Roller	Bit

07-08-2015 T:\Projects\2013\Pescadito\Landfil\Boring\Logs\B-52.bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air(Water Rotary
3"I.D.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/16/15 ENDED: 1/27/15

6.25" Dia. Drag Bit(0-11');8.75"Dia. Tricone Roller Bit (0-20');Installed 8" PVC casing (0-20'); Core(11-150'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-139' on 1/27/15. Boring had caved-in/sealed from (139-150') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 HEET 1 OF 8

SURFACE ELEVATION:

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center

Rancho Viejo Waste Management, LLC

NORTHING: EASTING: 17095438 772808

PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

B-55

Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
0-	548	7//	Brown FAT CLAY(CH), little silt and fine	- [4.75		
1-	547		sand, trace organics, stiff, high plasticity, moist, slightly calcareous and saline, massive.	CH	ST-1 (0-1.5') Rec=18"		1.75 2.5		
	546		Brown FAT CLAY(CH), little silt and fine sand, trace roots, very stiff, high plasticity, moist, highly calcareous and moderately	СН	ST-2 (1.5-3') Rec=14"		2.0		
3-	545		saline, slight blocky structure.	CH					
4-	544				ST-3 (3-4.5') Rec=12"		2.75		
5-	543		Light Brown, little Pinkish Gray and Brown FAT CLAY(CH), little silt and sand, trace		ST-4		3.5		
6-	542		yellowish brown iron staining, very stiff grading to hard, high plasticity, moist, moderately calcareous and saline, blocky.	СН	(4.5-6') Rec=17"		4.5+		
7-	541				ST-5 (6-7.5') Rec=17"		4.5 +		
	540		Light Olive Brown with trace Pale Brown FAT CLAY(CH), little fine sand and silt, trace yellowish brown and black staining, hard, high plasticity, moist, moderately		ST-6 (7.5-9') Rec=18"		4.5 +		
	539		calcareous and saline(gypsum crystals).	СН	ST-7		4.5 +		
10-	538		(10.5-11');Trace reddish brown, very stiff.		(9-10.5') Rec=18"		2.25		
	537		(11-12');Blocky structure with trace laminations, trace medium to coarse sand		ST-8 (10.5-12') Rec=18"		2,25 4.5+		
12-	536		and fine gravel. Moderately hard to hard Light Brown to	1	Nec-18				
13-	535		Brown with Light Gray FAT CLAYSTONE(CH), little fine sand and silt, trace yellowish brown, strong brown and						
14-	534		black staining in fissures, dry, aphanitic to very fine grained, blocky with trace thin						
15-	533		beds and laminations, moderately to well indurated, moderately calcareous and saline, slightly weathered.						
16-	532		Sames, original moderation.	СН	CB-9 (12-20') Rec=25"			0%	
17-	531				Rec=25"				
16 - 17 - 18 - 19 - 20 -	530								
19-	529								
20-			(Continued on next page)	į.		k:			
RILL	ING CON	JTR A	CTOR: Andrews & Foster WATER I FV	VEL (ET)	REMARKS				

-s\Norman_Frohling\Desktop\B-55.bor

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12,25" Dia, Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 SHEET 2 OF 8

SURFACE ELEVATION:

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center

Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

17095438 772808

PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

B-55

Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
20 —	- 528	111	(Continued from previous page)	1)			l
21 –	- 527		Moderately hard to hard, stratified Pale Olive to Olive to Grayish Brown to Gray FAT						
22-	- 526		CLAYSTONE(CH), trace yellowish brown and yellowish red staining, dry, aphanitic to very fine grained, blocky, moderately to well						
23-	- 525		indurated, slightly to highly calcareous, saline, slightly weathered.	СН	CB-10			08/	
24-					(20-27') Rec=23"	3		0%	
	- 523								
26-									
27 <i>-</i> 28 <i>-</i>	- 521		Hard, Gray to Dark Gray with Greenish Gray FAT CLAYSTONE(CH), trace fine sand and silt, trace yellowish brown and yellowish red staining, dry, aphanitic, blocky			115			
	- 519		to slightly laminated, well indurated, moderately calcareous, saline, slightly weathered.	СН	CB-11 (27-32')			48.33%	
30 –	- 518 - 517				Rec=47"				
32-	- 516								(32-36'); Moisture
33-	- 515		Hard with thin beds of moderately hard, Greenish Gray with trace Gray FAT CLAYSTONE(CH), trace very dark gray lean						in boring after 32-36' core run.
34-	- 514		claystone with brown saline material in partings and fissures, trace fine sand and silt, dry, aphanitic, blocky, well indurated,		CB-12 (32-36')	13		27.08%	
35-	- 513		slightly calcareuos and saline, slightly weathered.	СН	(32-36') Rec=46"				
36-	- 512							1	
37-	- 511		Same, little fine sand.						
	- 510				CB-13 (36-41') Rec=56"	-		35%	
39 – 40 –	- 509	111	Hard, Dark Greenish Gray SANDY LEAN CLAYSTONE(CL), little silt, dry, aphanitic to very fine grained, massive, (Continued)	CL					
	NG CO	NTRA	CTOR: Andrews & Foster WATER LEVE	I. (FT.) 11	REMARKS	17			-

-06-2015 C:\Users\Norman.Frohling\Desktop\B-55.bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"LD.;4.875"O.D. Double Tube Core Barrel

Double Tube Core bance
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12,25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water

from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 HEET 3 OF 8 Pescadito Environmental Resource Center

SURFACE ELEVATION:

NORTHING:

17095438

548

PROJECT:

CLIENT:

Rancho Viejo Waste Management, LLC

772808 EASTING:

PROJECT NO.: 148866

BORING NO.

LOGGED BY: **RWB**

B-55

Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
40-	508	111	(Continued from previous page); SANDY LEAN CLAYSTONE(CL), well indurated, non	0.0	CB-13				X
41-	507		calcareous, saline, fresh.		(36-41') Rec=56"				
	506 505		Same, dark greenish gray with light greenish gray SANDY LEAN CLAYSTONE(CL).						
44-	504								
45-	503			CL	CB-14 (41-49')				
46-	502				(41-49') Rec=92"			34,37%	
47-	501								
48-	500								
49-	499								
	498		Moderately hard to hard, Dark Greenish Gray with Light Gray FAT		CB-15 (49-52') Rec=34"			0%	
	497		CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, thinly to very thinly bedded with some laminations, well indurated, non		Rec=34"			0,0	
	- 496 - 495		calcareous, slightly saline, fresh.						
	493		Come with trace to little silt trace block						
	493		Same, with trace to little silt, trace black staining in fissures.	СН					
56-	- 492				CB-16			28.33%	
57 –	491				(52-62') Rec=103"			20.00%	
58-	490								
59-	489								
59 – 60 –	- 489		(Continued on next page) CTOR: Andrews & Foster WATER LEVE		DEMARKS		ļ		

07-06-2015 C

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"LD;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 SHEET 4 OF 8

SURFACE ELEVATION

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING: 17095438 772808

PROJECT NO. 148866

BORING NO.

LOGGED BY: RWB

B-55

									D-33
Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
60 —	- 488	1//	(Continued from previous page)	i	1				
61 —	- 487		Same, FAT CLAYSTONE(CH).		CB-16 (52-62') Rec=103"				
62-	- 486		Same, FAT CLAYSTONE(CH)		Rec=103				
63-	- 485								
64-				СН					
65-									
66 -					CB-17				
68-					(62-72') Rec=106"			27.5%	
69 –									
70-			Moderately hard to hard, Dark Greenish Gray and Dark Reddish Gray FAT CLAYSTONE(CH), trace fine sand and silt,						
71 –	- 477		dry, aphanitic, blocky, moderately to well indurated, non calcareous, saline, fresh.						
72-	- 476			СН					
73-	- 475								
74-	- 474								
75 —	- 473		Moderately hard to hard, Dark Greenish		-				
76-	- 472		Gray with trace Greenish Gray FAT CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, blocky, well indurated, non	СН	CB-18 (72-82')			10%	
77 –	- 471		calcareous, saline.		Řec=91"				
78-	- 470		Moderately hard to hard, Dusky Red to Weak Red with little Greenish Gray FAT		-				
	- 469		CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, blocky, moderately to well indurated, slightly to moderately calcareous,	СН					
80 –	D.16 =	///	saline, fresh. (Continued on next page) CTOR: Andrews & Foster CTOR: Andrews & Foster	16	REMARKS			1	

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-55.bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

3"x2'Long Shelby Tube(ST)(0-12'),12.25" Dia. Drag Bit(0-20') Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

548

772808

PROJECT:

Technically Complete, March 11, 2016 HEET 5 OF 8 Pescadito Environmental Resource Center

NORTHING:

EASTING:

17095438

CLIENT: Rancho Viejo Waste Management, LLC PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

Depth in Feet	Surf, Elev, 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
80-	468	111	(Continued from previous page)						
81-	467		Same, FAT CLAYSTONE(CH)		CB-18				
82-	<u> </u> + 466				(72-82') Rec=91"				
83-	465		Same, with trace pale red.						
84-	464								
85-	463							ı	
86-	462								
87-	461			СН	CB-19			0%	
88-	460				(82-92') Rec=91"			0 /0	
	459								
90-	458								
91-	457								
92-	+ 456								
93-	455								
94-	454	1	Moderately hard to hard, Greenish Gray with little Light Gray SANDY LEAN						
95-	453		CLAYSTONE(CL), dry, aphanitic to very fine grained, massive, moderately to well	CL	CB-20				
	452		indurated, slightly calcareous, saline, fresh. Moderately hard, Greenish Gray with little		(92-98') Rec=69"			0%	
90.			Light Gray SILTY SANDSTONE(SM), little clay, moist, fine grained to very fine	SM					
97	451		grained, massive, moderately indurated, slightly calcareous, saline, fresh.	sc					
96- 97- 98- 99- 100- 98- 99-	450		Moderately hard, Greenish Gray with little Light Gray CLAYEY SANDSTONE(SC), little silt, moist, fine grained to very fine grained,						
99	449		massive, moderately indurated, slightly calcareous, saline, fresh.	sc	CB-21 (98-102')			0%	
100		12	CLAYEY SANDSTONE(SC) (Cont'd)		Rec=16*		Į.	· ·	h
RILI	ING CO	NTRA	.CTOR: Andrews & Foster WATER LEVE	L(FT) I	REMARKS				

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2018
SHEET 6 OF 8

SURFACE ELEVATION:

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

NORTHING: EASTING:

17095438 772808

PROJECT NO.: 148866

BORING NO

LOGGED BY: RWB

B-55

		_							
Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100-	448	4575	(Continued from previous page)(97.7-101');	1	1		1	N i	1
101-			Moderately hard, Greenish Gray with little Light Gray CLAYEY SANDSTONE(SC), little silt, moist, aphanitic to very fine grained, blocky, moderately indurated, slightly	SC CH	CB-21 (98-102') Rec=16"				
102-	446		calcareous, saline, fresh.						
103-			Hard, Dark Greenish Gray with trace Light Gray FAT CLAYSTONE(CH), trace slickenslides, dry, aphanitic, blocky with trace laminations, well indurated, slightly						
104-	444		calcareous, saline, fresh.			· ·			
105-	- 443		(101.5-103.5'); Hard, Dark Reddish Brown FAT CLAYSTONE(CH), trace slickenslides, dry, aphanitic, blocky with trace laminations,						
106-	442		well indurated, moderately calcareous, saline, fresh.						
107-	- 441		(103.5-127.7′); Hard, Dark Reddish Brown with Reddish Brown and Light Reddish		CB-22 (102-112')			10%	-
108-	440		Brown and trace Greenish Gray FAT CLAYSTONE(CH), trace fine sand and silt, dry, aphanitic, massive with some blocky		Rec=105"				E
109-	439		structure, thin beds and laminations, well indurated, moderately to highly calcareous, saline, fresh.						
110-	- 438								
111-	- 437			СН					
112-	- 436								
113-	- 435								
114-	- 434			:	CB-23				
115-	- 433				(112-117') Rec=52"			0%	
116-	432								
117-	431								
118-	430				CB-24				
119-	- 429				(117-127') Rec=82"				
120-		///	(Continued on next page)						
)RILLI)RILLI	NG CO NG ME	NTRA THOE	CTOR: Andrews & Foster D: Air Rotary 3"I.D.:4.875"O.D.	` ′	REMARKS 3"x2'Long Shelby				g Bit(0-20')
RILL	ING EQI	U IPMI	Double Tube Core Barrel ENT: Gardner Denver 15W		Installed 8" PVC Boring was tremi	e-grouted	17'); Core(12 with Quik-G	rout bentoni	te/water

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-55.bor

DRILLING EQUIPMENT: Gardner Denver 15W Truck Mounted Drill Rig DRILLING STARTED: 1/28/15 ENDED: 2/5/15

EASTING:

548

772808

PROJECT:

Technically Complete, March 11, 2016 HEET 7 OF 8

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: 17095438 CLIENT:

PROJECT NO. 148866

BORING NO.

LOGGED BY: **RWB**

Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS	
120-	428	111	(Continued from previous page)	ľ			ý		i.	
121-	427		Same, FAT CLAYSTONE(CH)							
			•							
122-	426									
123-	425				CB-24					
124-	424			СН	(117-127') Rec=82"			0%		
125-	423									
400	400									
126-	422									
127-	421									
128-	420		Brown FAT CLAY(CH), trace fine sand and silt, very stiff, high plasticity, dry highly	— CH —	CB-25 (127-129')		3.5	0%		
129-	419		calcareous, slightly saline, massive.		(127-129') Rec=18"					
120	440		Hard, Dark Greenish Gray with little Light Greenish Gray FAT CLAYSTONE(CH), trace							
130-	418		fine sand and silt, dry, aphanitic, massive with trace thin beds and laminations, well	СН						
131 -	417		indurated, moderately calcareous, saline, fresh.							
132-	416		(130.5-131.2');Dark Reddish Brown with trace Dark Greenish Gray.							
133-	415									
404-	144		Hard, Dark Reddish Brown with Reddish		OD 00					
134-	414		Gray and Pinkish Gray with trace Greenish Gray FAT CLAYSTONE(CH), dry, aphanitic,		CB-26 (129-139') Rec=95"			6.66%		
135-	413		massive with slight blocky structure and some thin beds and laminations, well							
136-	412		indurated, moderately calcareous, slightly saline, fresh.	СН						
137-	411									
400										
138-	410		Hard, Dark Reddish Gray with little Greenish Gray FAT CLAYSTONE(CH), trace	СН				4		
136 - 137 - 138 - 139 - 140 -	409		slickenslides, dry, aphanitic, blocky, well \indurated, slightly calcareous, saline, fresh.		CB-27					
140-			FAT CLAYSTONE(CH). (Continued)	СН	(139-149') Rec=110"					
RILL	ING CO	NTRA	CTOR: Andrews & Foster WATER LEVE	(FT.) I	REMARKS					

07-06-2015 C

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary
3"I.D.;4.875"O.D.
Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

REMARKS
3"x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20')
Installed 8" PVC casing (0-17'); Core(12-153').

Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2016 SHEET 8 OF 8

SURFACE ELEVATION:

548

PROJECT: CLIENT:

Pescadito Environmental Resource Center

Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

17095438 772808

PROJECT NO. 148866

BORING NO.

RWB LOGGED BY:

								Т		
Depth in Feet	Surf. Elev. 548	Strata	DESCRIPTI	ON	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140-	- 408	111	(Continued from previous pag		1	1	1	1		
141 —	- 407		Hard, Dark Reddish Brown wi Greenish Gray FAT CLAYSTO slickenslides, trace light brow	ONE(CH), trace nish gray	СН					
142 —	- 406		limestone nodules, dry, aphar well indurated, slightly to mod calcareous, saline.	erately						
143-	- 405		Hard, Weak Red with little Pa	le Red and		-				
144-	- 404		trace Greenish Gray LEAN CLAYSTONE(CL), trace fine dry, aphanitic, massive with s	light blocky		CB-27		el s	00/	
145—			structure with trace thin beds laminations, well indurated, m calcareous, saline, fresh.		CL	(139-149') Rec=110"		-	0%	
147 <i>-</i>			Hard, Dark Reddish Brown w Greenish Gray FAT CLAYSTO slickenslides, dry, aphanitic, r	ONE(CH), trace nassive with						
149-	- 399		slight blocky structure and tra and laminations, well indurate to highly calcareous, saline, fi	ed, moderately						
150 —	- 398		Same, moderately hard to ha to well indurated.	rd, moderately	СН					
151 —	- 397					CB-28 (149-153') Rec=48"			0%	
152 —	- 396		(152-153');Some gray and pir	nkish gray.		`Rec=48"'				11
153-	- 395		End of Boring @153'				l			
154-	- 394									
155-	- 393									
156-	- 392									
157 —	- 391									
158 —	390									
159-	- 389							::		
160 —										
RILL	ING CO	NTRA	CTOR: Andrews & Foster	WATER LEVE	L (FT.)	REMARKS	v. Tuka/ST	V(0. 131), 13.3	SII Dia Das	~ D:+(0 200

07-06-2015 C:\Users\Norman,Frohling\Desktop\B-55_bor

DRILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"LD.;4,875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

3"x2"Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-20') Installed 8" PVC casing (0-17'); Core(12-153'). Boring was tremie-grouted with Quik-Grout bentonite/water from 0-142' on 2/5/15. Boring had caved-in/sealed from (142-153') prior to placement of bentonite grout.

Technically Complete, March 11, 2016_{HEET 1 OF 8} SURFACE ELEVATION: 558

NORTHING: 17098900 PROJECT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

CLIENT: EASTING: 772960

PROJECT NO.: 148866

BORING NO.

LOGGED BY: RWB

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS	
0-	558	///	Dark Brown FAT ORGANIC CLAY(OH), little							
1-	- 557		fine sand, very stiff, high plasticity, moist, highly calcareous, saline, massive with slight blocky structure.	ОН	ST-1 (0-1.5') Rec=18"		3,5			
	- 556 - 555		Reddish Brown FAT CLAY(CH), little fine sand, very stiff, high plasticity, moist, moderately to highly calcareous, saline,		ST-2 (1.5-3') Rec=14"		3.0			
	- 554		massive.		ST-3 (3-4.5') Rec=12"		2.5			
5-	- 553		Stiff.	СН	ST-4 (4.5-6') Rec=17"		1.25			
6-	- 552				100					
5 7-	- 551		Very stiff.		ST-5 (6-7.5') Rec=17"		3.0			
1 8-	- 550		Stiff. Pale Olive with little Grayish Brown and		ST-6		1.5			
9-	- 549		Reddish Brown FAT CLAY(CH), trace strong brown staining, little fine sand, very stiff grading to hard, high plasticity, dry to		(7.5-9') Rec=18"		2,25			
	- 548		moist, slightly calcareous, saline, blocky.	СН	ST-7 (9-10.5') Rec=18"		4.5 +			
	- 547				ST-8 (10.5-12') Rec=18"		4.5+			
	- 546		Moderately hard to hard, Grayish Brown FAT CLAYSTONE(CH), dry, aphanitic,		1366-10					
	- 545		blocky with some thin beds, moderately to well indurated, slightly calcareous, saline, slightly weathered,	СН						
14-			Moderately hard to hard, Reddish Brown FAT CLAYSTONE(CH), trace yellowish		CB-9 (12-17')			0%		
	- 543		brown staining, dry, aphanitic, blocky with some thin beds, moderately calcareous,		(12-17') Rec=17"			0.70		
16-	- 542		saline, slightly weathered.							
17-	- 541			СН						
18-	- 540		Same, with reddish gray and weak red.		CB-10					
19-	- 539				(17-22') Rec=23"			10%		
20-		1//	(Continued on next page)							
RILLI	NG CON	TRA	CTOR: Andrews & Foster WATER LEVEI	(FT) F	REMARKS					

RILLING CONTRACTOR: Andrews & Foster
DRILLING METHOD: Air Rotary
3"I.D.;4:875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

-s/Norman, Frohling\Desktop\B-58.bor

07-06-2015 C

16 SHEET 2 OF 8

SURFACE ELEVATION:

558

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING:

17098900 772960

LOGGED BY:

PROJECT NO.: 148866

RWB

BORING NO

B-58

Surf. Surf										
Same, FAT CLAYSTONE(CH). CH CR-10 (17-22) Rec=23"	Depth in Feet	Elev.	Strata	DESCRIPTION	USCS/ Material Abbreviation	Type & No. Depth (ft)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
22 — 536 23 — 535 24 — 534 25 — 533 26 — 532 27 — 531 28 — 530 29 — 529 29 — 529 29 — 529 30 — 528 31 — 527 31 — 527 31 — 527 32 — 528 31 — 527 32 — 528 33 — 528 34 — 524 35 — 523 35 — 528 36 — 522 37 — 521 38 — 526 38 — 622 38 — 622 38 — 622 38 — 622 38 — 622 38 — 622 39 — 519 40 — (Continued on next page) 40 — (Continued on next page)	20-	- 538	111	(Continued from previous page)		i	Î	i i	ĺ	
22	21-	- 537		Same, FAT CLAYSTONE(CH).	СН					
CLAYSTONE(CH), moist to wet, aphantitic, blocky with some thin beds and laminations, moderately indurated, slightly calcareous, saline, slightly weathered. CH (22-27) Rec-28* CH (22-27	22-	- 536				Rec=23"				
moderately indurated, slightly calcareous, saline, slightly weathered. CH CB-11 (22-27) (Res=26) Moderately hard, Brown with Pale Brown and Very Pale Brown Far CLAYSTONE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickensildes, moist(27-30-5), dry(30.5-32), little fine sand, aphantic to very fine grained, massive with slight blocky structure, moderately indurated, slightly calcareous, saline, slightly weathered. Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly weathered. Moderately hard, saline, slightly weathered. Moderately hard, saline, slightly weathered. Moderately hard, saline, slightly weathered. CH CB-12 (27-32) (Rec=58) S77.5% Moderately indurated, slightly calcareous, saline, slightly weathered. Moderately hard to hard, saline, slightly weathered. CH CB-12 (27-32) (Rec=58) S77.5% Moderately indurated, slightly calcareous, saline, slightly weathered. Moderately hard to hard, slightly weathered. CH CB-13 (32-407) (CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphantic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-13 (32-407) (CB-13 (32-407) (Rec=33) CH CB-12 (27-32)				Olive and trace Yellowish Brown FAT CLAYSTONE(CH), moist to wet, aphanitic,						
26 – 532 27 – 531 28 – 530 28 – 530 29 – 529 30 – 528 30 – 528 31 – 527 32 – 526 Brown FAT CLAYSTORE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickenslides, moist(27-30.5), dry(30.5-32°), little fine sand, aphantic to very fine grained, massive with slight blocky structure, moderately indurated, slightly calcareous, saline, slightly weathered. Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly weathered. Moderately hard to hard(32.3-34°), soft to moderately hard to hard(32.3-34°), soft to moderately hard to hard(32.3-34°), soft to moderately hard behalf of the moderately hard behalf of the moderately hard behalf of the moderately hard in hard, the partings, dry, aphantite to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-12 (27-32') Rec=58" 57.5% CH CH CB-13 (32-40') Rec=33" CH CB-13 (32-40') Rec=33" CH CB-13 (32-40') Rec=33" (CH CB-13 (32-40') Rec=33"				moderately indurated, slightly calcareous,	СН	CB-11 (22-27')	- 1		16.66%	
Moderately hard, Brown with Pale Brown and Very Pale Brown FAT CLAYSTONE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickenslides, moist(27-30.5), dry(30.5-32"), little fine sand, aphanitic to very fine grained, massive with slight blocky structure, moderately indurated, slightly calcareous, saline, slightly weathered. Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly calcareous, saline, slightly weathered. Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly calcareous, saline, slightly weathered. Moderately hard (34-40"), Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CLAYSTONE(CH), trace reddish brown, strong brown, strong brown, strong brown and little Olive FAT CLAY(CH), trace fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-12 (27-32") CH CB-13 (32-40") Rec=58" CH CB-13 (32-40") Rec=33" CH CB-13 (32-40") Rec=33"						Rec=26"				
and Very Pale Brown FAT CLAYSTONE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickensildes, moist(27-30.5), dry(30.5-32'), little fine sand, aphanitic to very fine grained, massive with slight blocky structure, moderately indurated, slightly calcareous, saline, slightly weathered. Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly calcareous, saline, slightly weathered. Moderately hard to hard(32.3-34'), soft to moderately hard to hard(32.3-34'), soft to moderately hard (34-40') Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace yellowsh brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-12 (27-32') Rec=58" FAC-12 (27-32') Rec=58" CH CH CH CB-13 (32-40') Rec=33" 12.5% CH CH CB-13 (32-40') Rec=33"										ļ
saline, slightly weathered. 32 526 Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly weathered. Moderately hard to hard(32.3-34'), soft to moderately hard(34-40'). Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. 36 522 37 521 38 520 39 519 (Continued on next page)	29-	- 529		and Very Pale Brown FAT CLAYSTONE(CH), trace reddish brown, strong brown and black staining in partings, trace low angle slickenslides, moist(27-30.5'), dry(30.5-32'), little fine sand, aphanitic to very fine grained, massive with slight blocky structure,	СН	CB-12 (27-32') Rec=58"			57.5%	
Brown FAT CLAY(CH), trace fine sand, hard, high plasticity, moist, slightly calcareous, saline, slightly weathered. Moderately hard to hard(32.3-34'), soft to moderately hard(34-40'), Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-13 (32-40') Rec=33" 12.5% CH CB-13 (32-40') Rec=33" (COntinued on next page)				saline, slightly weathered.						
Moderately hard to hard(32.3-34'), soft to moderately hard(34-40'), Brown with Pale Brown and little Olive FAT CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-13 (32-40') Rec=33" CH CB-13 (32-40') Rec=33" (Continued on next page)				hard, high plasticity, moist, slightly	CH					
35 — 523 36 — 522 36 — 522 37 — 521 38 — 520 39 — 519 40 — (Continued on next page) CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining in partings, dry, aphanitic to very fine grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CB-13 (32-40') Rec=33"				Moderately hard to hard(32.3-34'), soft to moderately hard(34-40'), Brown with Pale						
36—522 grained, massive, moderately to well indurated, slightly calcareous, slightly weathered. CH CB-13 (32-40') Rec=33" CH CB-13 (32-40') Rec=33" (Continued on next page)	35-	- 523		CLAYSTONE(CH), little fine sand, trace yellowish brown, yellow and black staining						
37 — 521 38 — 520 39 — 519 40 — (Continued on next page)	36-	522		grained, massive, moderately to well indurated, slightly calcareous, slightly	СН	CB-13 (32-40')			12.5%	
39 519 40 (Continued on next page)	36 – 37 – 38 – 39 – 40 –	521		weathered.		1160-33				
(Continued on next page)	38-	520								
40-1	39-	519								
	40-		///							

07-06-2015 C:\Users\Norman Frohling\Desktop\B-58 bor

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D.

Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W Truck Mounted Drill Rig DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150').
Piezometer P-58D was installed into the boring to 148'

upon the completion of drilling activities.

558

PROJECT:

Technically Complete, March 11, 2016 HEET 3 OF 8 Pescadito Environmental Resource Center

NORTHING: EASTING: 17098900

772960

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO. 148866 BORING NO.

RWB LOGGED BY:

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
40	518	///	(Continued from previous page)	ľ					
41	517		Same, moderately hard to hard, FAT CLAYSTONE(CH).	СН					
	516		Hard, Greenish Gray with little Light Greenish Gray FAT CLAYSTONE(CH), trace fine sand, dry, aphanitic, massive, well indurated, highly calcareous grading to		CB-14 (40-45') Rec=39"			0%	
44	514		slightly calcareous, slightly saline, fresh.						
	513			СН			1		
	512		Trace yellowish red and black staining in partings and fissures, slightly calcareous, slightly weathered.						
	510		Hard, Dark Gray with little Gray and trace Greenish Gray FAT CLAYSTONE(CH), dry,		CB-15				
	508		aphanitic, massive with slight blocky structure, well indurated, highly calcareous, saline, fresh.		(45-53') Rec=74.5"			21.87%	
	507								
	506			СН					
	504		Little to some greenish gray, trace slickenslides.						
	503								
56 to 1	502		Hard, Dark Gray with Greenish Gray and little Dark Greenish Gray FAT		CB-16 (53-63')			85.83%	
Desk	501		CLAYSTONE(CH), often stratified, trace fine sand, dry, aphanitic, massive with some thin bedding and laminations, well indurated, moderately to highly calcareous, saline,	СН	Rec=106"				
59	499		fresh.	l					
60 60		111	(Continued on next page) CTOR: Andrews & Foster WATER LEVE	ļ	l,	,	y.		6

RILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary 3"I.D.;4.875"O.D.

DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

Technically Complete, March 11, 2016 HEET 4 OF 8

SURFACE ELEVATION:

558

PROJECT: CLIENT:

Pescadito Environmental Resource Center Rancho Viejo Waste Management, LLC

NORTHING: EASTING: 17098900 772960

PROJECT NO.: 148866

BORING NO.

LOGGED BY: RWB

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
60 –	- 498	111	(Continued from previous page)				1		
61-	- 497		Same, FAT CLAYSTONE(CH).						
62-	- 496				CB-16 (53-63') Rec=106"				
63-	- 495			СН					
				011					
64-						-	,		
65-	- 493					,			
66-	- 492		Hard, Greenish Gray with Dark Gray, Gray						
67 –	- 491		and Light Gray FAT CLAYSTONE(ĆH), stratified, trace fine sand, dry, aphanitic, massive with some thin beds and						20
68-	- 490		laminations, well indurated, slightly to highly calcareous, saline, fresh.		CB-17 (63-73')			62.92%	2.1
69-	- 489		,		Rec=110"			02.0270	
70-	- 488			СН					
71-									
72-	- 486								
73-	- 485	1//	Hard, Dark Gray with Gray and Light Gray with trace Greenish Gray LEAN						
74-	- 484		CLAYSTONE(CL), trace to little fine sand, dry, aphanitic to very fine grained, massive,						
75-	- 483	500	well indurated, highly calcareous, saline, fresh.	CL					
76 –	- 482								
77 -	- 481				CB-18 (73-83') Rec=103"			67.5%	
78 <i>-</i> -			Hard, Dark Greenish Gray with Greenish Gray and Light Greenish Gray FAT		1.00-100				
79-	- 479		CLAYSTONE(CH), dry, aphanitic, massive, well indurated, highly calcareous, saline, fresh.	СН					
80-		111	(79-80');Trace black lignite. (Continued)		ļ		,		

C:\Users\Norman.Frohling\Desktop\B-58.bor

07-06-2015

DRILLING CONTRACTOR: Andrews & Foster DRILLING METHOD: Air Rotary
3"L.D.;4,875"O.D.
Double Tube Core Barrel

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

WATER LEVEL (FT.)

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12,25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

558

PROJECT:

PEachnically Gamplete Marchiti, 2016

NORTHING:

EASTING:

17098900 772960

CLIENT:

Rancho Viejo Waste Management, LLC

PROJECT NO.: 148866 LOGGED BY: RWB

BORING NO.

B-58

1			
1	Z\$	2	20
V	S		
V.			

	r	_		·					
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	Rab	REMARKS
80 —	- 478	111	(Continued from previous page)		ľ				
81 —	- 477		Same, FAT CLAYSTONE(CH).	СН					
82-	- 476	///	Hard, Dark Greenish Gray with Greenish Gray and Dark Gray LEAN CLAYSTONE(CL), trace dark yellowish	CL	CB-18 (73-83') Rec=103"				
=0.70	- 475 - 474		brown staining in fissures, dry, aphanitic to very fine grained, slight brecciation, well indurated, slightly calcareous, slightly to						l J
85 —	- 473		moderately weathered, saline. Hard, Dark Greenish Gray with Greenish Gray, Light Greenish Gray and little Dark Gray to Gray FAT CLAYSTONE(CH), trace fine sand, dry, well indurated, aphanitic,		CB-19 (83-87') Rec=46.5"			72.92%	
86 -			slightly calcareous, saline, slightly weathered.						
88-			Trace slickenslides.						
89				СН					
90					CB-20				
92-					(87-95') Rec=93.5"			67.18%	
93	- 465								
94	-464								
95	463		Hard, Dark Gray with Gray CLAYEY						
96	- 462		SANDSTONE(SC), dry, very fine grained to fine grained, well indurated, non calcareous, saline, massive, fresh.	sc					
97	461				CB-21			07.655	
98			Hard, Dark Gray FAT CLAYSTONE(CH), dry, aphanitic, massive, well indurated, highly calcareous, saline, fresh.	СН	(95-105') Rec=91.5"			27.08%	
99 100 –	459		(Continued on next page)	ОП				,	

RILLING CONTRACTOR: Andrews & Foster RILLING METHOD: Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel DRILLING EQUIPMENT: Gardner Denver 15W Truck Mounted Drill Rig DRILLING STARTED: 1/28/15 ENDED: 2/5/15

REMARKS
3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40')
Installed 8" PVC casing (0-40'); Core(12-150').
Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

rs\Norman_Frohling\Desktop\B-58.bor

SHEET 6 OF 8

SURFACE ELEVATION:

558

PROJECT:

PrediniEavity combilete, Wafen 171, 2016

NORTHING:

EASTING:

17098900 772960

CLIENT:

Rancho Viejo Waste Management, LLC

LOGGED BY: RWB

PROJECT NO. 148866

BORING NO.

B-58

Depth in Feet	Surf. Elev. 558	Strata	DESCRIPTION	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
100-	- 458		(Continued from previous page)	Î					
101-	457		Same, FAT CLAYSTONE(CH).			41			
102-	- 456				CB-21				
103-	- 455			СН	(95-105') Rec=91.5"				
104-	- 454								
105—	- 453								
106—	- 452		(@105.6');45 degree slickenslides (106.6-106.7');Very dark gray.						
107-	- 451	///	Hard, Greenish Gray LEAN CLAYSTONE(CL), trace fine sand, dry,						
108	- 450		aphanitic, massive, well indurated, non calcareous, saline, fresh.	CL	CB-22 (105-111')			50%	
109	- 449				Rec=61"				
110-			Very hard, Gray LEAN CLAYSTONE(CL), little silt, trace fine sand, dry, very fine grained to aphanitic, massive, well indurated, non calcareous, saline, fresh.	CL					
112	3		Hard, Greenish Gray to Dark Greenish Gray with Light Greenish Gray and trace Dark						12
			Gray FAT CLAYSTONE(CH), dry, aphanitic, massive, well indurated, non calcareous,						
113			saline, fresh.	СН	CB-23 (111-115') Rec=39.5"			47.92%	
114-									
115	443		Moderately hard, Dark Reddish Gray with trace Greenish Gray FAT CLAYSTONE(CH),						
116	- 442		dry, aphanitic, blocky with trace slickenslides, moderately indurated, slightly						
117	- 441		calcareous, saline, slightly weathered.	СН	CB-24				
118	- 440				(115-125') Rec=48"			5.8%	
119	- 439								
120-		1//	(Continued on next page)		1			Į.	

07-06-2015 C:W

\Norman.Frohling\Desktop\B-58.bor

DRILLING CONTRACTOR: Andrews & Poster
DRILLING METHOD: Air Rotary
3"I.D.;4.875"O.D.
Double Tube Core Barrel
DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

3'x2'Long Shelby Tube(ST)(0-12');12.25" Dia. Drag Bit(0-40') Installed 8" PVC casing (0-40'); Core(12-150'). Piezometer P-58D was installed into the boring to 148' upon the completion of drilling activities.

SHEET 7 OF 8

SURFACE ELEVATION: NORTHING:

EASTING:

558

PROJECT:

Personnicative Complete, Ward Contern, 2016

Rancho Viejo Waste Management, LLC

17098900

CLIENT: 772960

PROJECT NO.: 148866

BORING NO

LOGGED BY: **RWB**

B-58

		ī			7						
	Surf Elev 558	Strata	DESCRIPT	ION	USCS/ Material Abbreviation	National Application	Sample 「ype & No. Depth (ft) ecovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
120-	438	111	(Continued from previous page	ge)	Î	ï	V.			i	
121 —	437		Same, FAT CLAYSTONE(CH	H).	СН						
122-	436		Moderately hard, Dark Reddi			_					
123 — 4			little Reddish Brown, Light Reddish Brown, Light Re and little Greenish Gray FAT CLAYSTONE(CH), dry, apha to blocky with trace slickensli moderately indurated, highly	eddish Brown initic, massive des, saline,		(CB-24 (115-125') Rec=48"				
125 — 4	133		slightly weathered.								
125 - 4	+55		(124-125');Hard, well indurate	ed, massive.							
126 — 4 127 — 4	1		Moderately hard to hard, Dar Brown with Reddish Brown, L Brown, Dark Reddish Gray a	ight Reddish							
38 - 4	ļ		Greenish Gray FAT CLAYST aphanitic, massive to blocky valickenslides, moderately to whighly calcareous, saline, slig	ONE(CH), dry, with trace vell indurated,	СН						
129 — 4	129		weathered.	itay							
130 — 4 131 — 4	-					(CB-25 125-135') Rec=73"			10.83%	
132 - 4	F										
133 — 4	25									i	
134 — 4	24										
135 - 42	23										
136 - 42	ľ		Hard, Reddish Brown with Lig Brown and trace to little Gree CLAYSTONE(CH), trace fine	nish Gray FAT							
137 - 42	21		aphanitic, massive with slight structure, well indurated, mod calcareous, saline, slightly we	blocky erately	CL		CB-26				
138 - 42	20		Hard, Greenish Gray with Ligh			(1 R	135-145') ec=94,5"			37_92%	
139 — 41	19		Gray and little Reddish Brown Gray FAT CLAYSTONE(CH), massive with slight blocky stru peds and laminations, (Contin	and Reddish dry, aphanitic, ucture, thin	СН						
140		5531			(PP)	t D.T.		1			
LLING	і МЕТІ	HOD:	TOR: Andrews & Foster Air Rotary 3"I.D.;4.875"O.D. Double Tube Core Barrel IT: Gardner Denver 15W	WATER LEVE	<u>. (FT.</u>)	3'x2'L Instal	IARKS ong Shelby led 8" PVC o meter P-58D	casing (0-4	0'); Core(12	-150').	, ,
DRILLING			Truck Mounted Drill Rig			upon	the completi	on of drilli	ng activities		
CALLETTAG	JIAN	TED.	MANUEL ENDOD. ASID							-	

07-06-2015 C:\Users\Norman,Frohling\Desktop\B-58,bor

558

PROJECT:

Technically Complete, March 11, 2016 HEET 8 OF 8

NORTHING:

EASTING:

17098900 772960

CLIENT:

PROJECT NO.:

148866

RWB

Rancho Viejo Waste Management, LLC

upon the completion of drilling activities.

LOGGED BY:

BORING NO.

		_								
Depth in Feet	Surf. Elev. 558	Strata	DESCRIPT	TON	USCS/ Material Abbreviation	Sample Type & No. Depth (ft) Recovery (in)	Blow Count	UCS (tsf) Using Pocket Penetrometer	RQD	REMARKS
140-	418	111	(Continued from previous pa	age)	1		1	<u> </u>	ı	
141 —	- 417		(Cont'd) FAT CLAYSTONE(indurated, moderately calcal slightly weathered.	CH), well reous, saline,						
142-	416		ongray wedatered.			OD 00				
143-	- 415				СН	CB-26 (135-145') Rec=94.5"				
144-	- 414									
145—	- 413		Hard, Reddish Brown with tr	ace to little						
146—	- 412		Greenish Gray FAT CLAYS aphanitic, massive, well inducalcareous, saline, fresh.	TONE(CH), dry,						
147	- 411									p. 174
148	- 410				СН	CB-27 (145-150') Rec=57"			70.83%	V
149-	- 409									
150	- 408		End of Boring @150'							
151 —	- 407		Lind of Bolling @ 100							
152-	- 406									
153-	- 405									
154-	- 404									
155	- 403									
156	- 402									
157	401									
158	- 400									
159	- 399									
160-										
DRILLI	NG MET	'HOD	CTOR: Andrews & Foster : Air Rotary 3"LD:4.875"O.D. Double Tube Core Barrel NT: Gardner Denver 15W	WATER LEVEL		REMARKS 3'x2'Long Shelby Installed 8" PVC Piezometer P-58U	casing (U-4	10'), Core(L	Z-150').	

07-06-2015 C:\Users\Norman.Frohling\Desktop\B-58.bor

DRILLING EQUIPMENT: Gardner Denver 15W
Truck Mounted Drill Rig
DRILLING STARTED: 1/28/15 ENDED: 2/5/15

III-E.5-C Photographs

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 1

Description:

Double Tube Core Barrel

Photograph No. 2

Description:

Drill Bit

1

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 3

Description:

B-52

53' to 60'

Photograph No. 4

Description:

B-52

60' to 70'

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 5

Description:

B-52

90' to 100'

Photograph No. 6

Description:

B-52

141' to 150'

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 7 **Description:** B-55 27' to 32' Photograph No. 8 **Description:** B-55 36' to 41'

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 9

Description:

B-55

102' to 112'

Photograph No. 10

Description:

B-55

129' to 139'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 11

Description:

B-58

27' to 32'

Photograph No. 12

Description:

B-58

53' to 63'

Client: Rancho Viejo Waste Management, LLC

Location: Pescadito Environmental Resource Center - Webb County, Texas

Photograph No. 13

B-58

63' to 73'

Photograph No. 14

Description:

B-58

111' to 115'

Client: Rancho Viejo Waste Management, LLC Location: Pescadito Environmental Resource Center – Webb County, Texas

Photograph No. 15

Description:

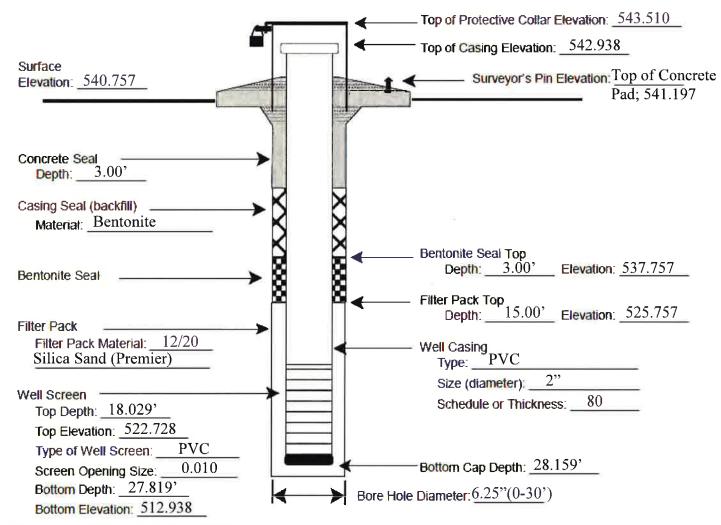
B-58

145' to 150'

III-E.5-D Piezometer Data Sheets

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

P Te W

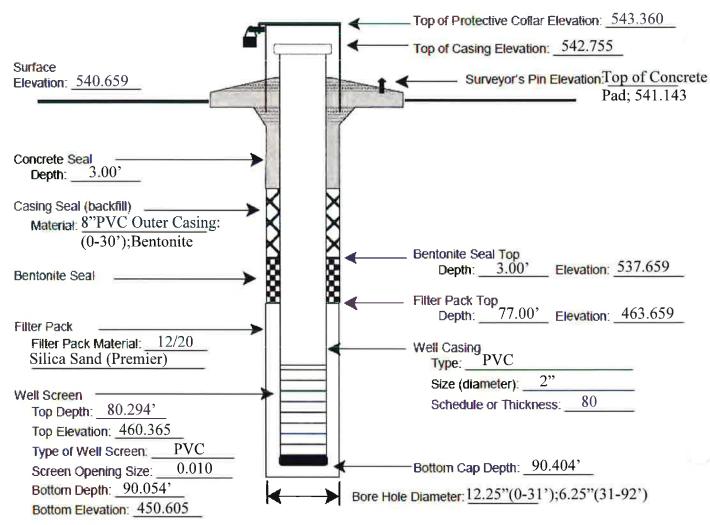

Piezometer Data Sheet

Texas Commission on Environmental Quality Waste Permits Division

Piezometer I.D. No.: P-52S
Date of Development:NA
Driller
Name: <u>Jimmy Ellis(Andrews & Foster)</u>
License No.:3243
n:Ralph Bonk, P.G.(CB&I)
531.308
Yegua-Jackson
g Protection: <u>4" x 4" Dia. X 5' Long (Steel)</u>
x 5" thick
ו ו

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).


Piezometer Data Sheet

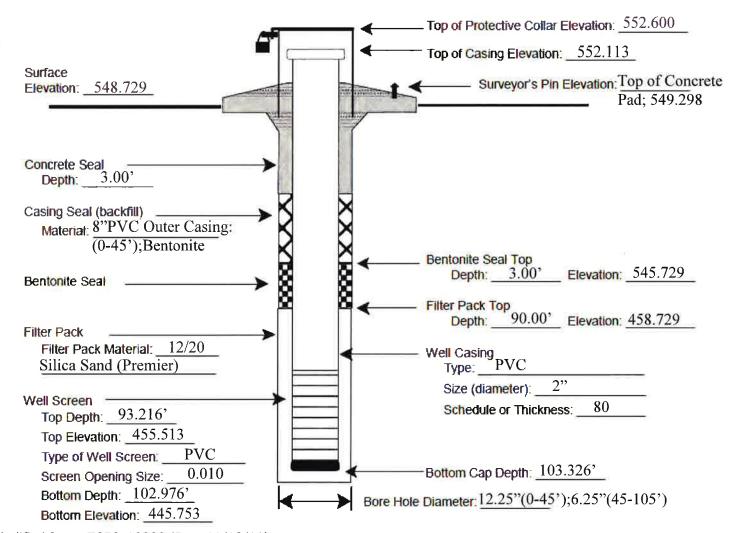
Texas Commission on Environmental Quality Waste Permits Division

Permittee or Site Name: <u>Pescadito Environmental Resource</u>	MSW Permit No.: 2374
<u>Center</u>	Piezometer I.D. No.: P-52D
County: Webb	Date of Development:NA
Date of Piezometer Installation:1/27/15	Driller
Piezometer Latitude: <u>N:17090899.250</u> Longitude: <u>E:771364.129</u>	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.:3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Development	t:531.465
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device:Nut/Bolt Type of Casin	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: $\underline{4' \times 4}$	' x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

T W


Piezometer Data Sheet

Texas Commission on Environmental Quality Waste Permits Division

Permittee or Site Name: Pescadito Environmental Resource	MSW Permit No.:2374
Center	Piezometer I.D. No.: P-55D
County: Webb	Date of Development:NA
Date of Piezometer Installation: <u>2/6/15</u>	Driller
Piezometer Latitude: N:17095437.396 Longitude: E:772808.836	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position:	License No.: 3243
Upgradient <u>N/A</u> Downgradient <u>N/A</u>	
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: <u>541.833</u>
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: Nut/Bolt Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	' x 5" thick

Notes:

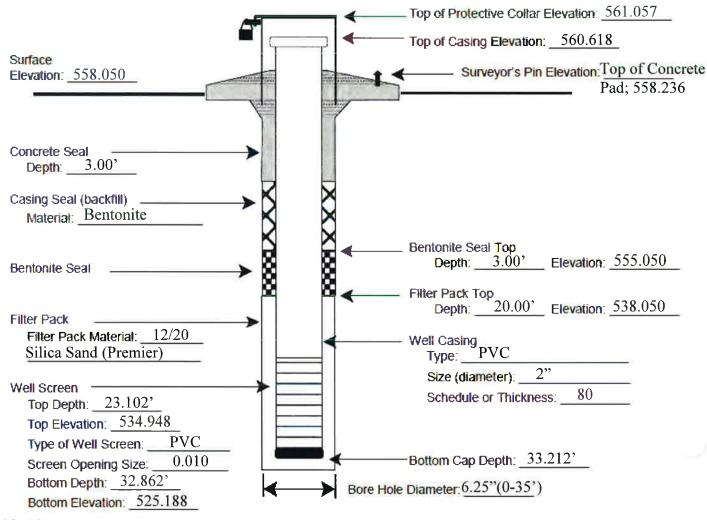
- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

2374

MSW Permit No

TCEO

Piezometer Data Sheet


Permittee or Site Name: Pescadito Environmental Pescurce

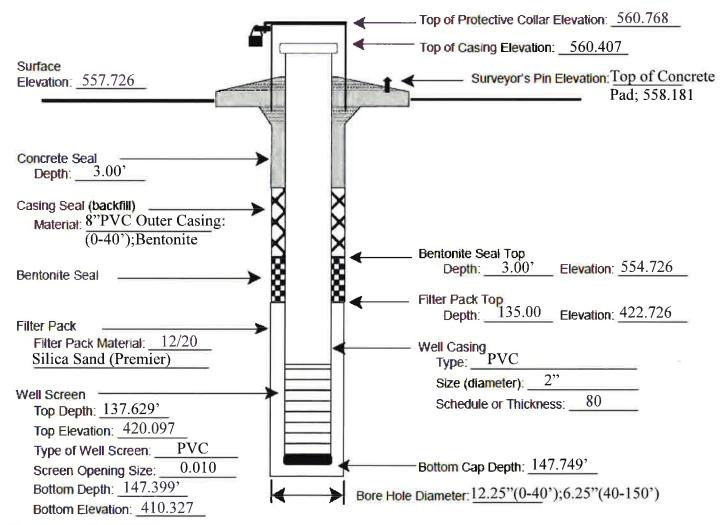
Texas Commission on Environmental Quality Waste Permits Division

remittee of Site Name: rescarto Environmental resource	115W Telline No.:
<u>Center</u>	Piezometer I.D. No.: P-58S
County: Webb	Date of Development:NA
Date of Piezometer Installation: 2/11/15	Driller
Piezometer Latitude: N:17098904.202 Longitude: E:772957.408	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position: Upgradient N/A Downgradient N/A	License No.:3243
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Raiph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: <u>535.238</u>
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: <u>Nut/Bolt</u> Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	
concrete Surface Fad (with steel remote ment) Dimensions. 4 X 4	Y x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

TGEO


Piezometer Data Sheet

Texas Commission on Environmental Quality Waste Permits Division

Permittee of Site Name: <u>Pescaulto Environmental Resource</u>	MSW Permit No.:
Center	Piezometer I.D. No.: P-58D
County: Webb	Date of Development: NA
Date of Piezometer Installation: <u>2/12/15</u>	Driller
Piezometer Latitude: N:17098878.889 Longitude:772970.399	Name: <u>Jimmy Ellis(Andrews & Foster)</u>
Piezometer Hydraulic Position: Upgradient N/A Downgradient N/A	License No.:3243
Geologist, Hydrologist, or Engineer Supervising Piezometer Installation	on: Ralph Bonk, P.G.(CB&I)
Static Water Level Elevation (with respect to MSL) after Developmen	t: 441.847
Name of Geologic Formation(s) in which Piezometer is completed:	Yegua-Jackson
Type of Locking Device: <u>Nut/Bolt</u> Type of Casi	ng Protection: 4" x 4" Dia. X 5' Long (Steel)
Concrete Surface Pad (with steel reinforcement) Dimensions: 4' x 4	Y x 5" thick

Notes:

- Report all depths from Surface Elevation and all Elevations relative to Mean Sea Level (MSL), to nearest hundredth of a foot.
- Diameter of boring should be at least 4 inches larger than diameter of casing.
- Use flush screw joint casing only, 2-inch diameter or larger, with o-rings or PTFE tape in joints (4-inch diameter recommend).

Technically Complete, March 11, 2016

III-E.5-E TDLR Well Reports

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Attention Or Confidentiali	ty Privilege No	tice	V20072007200700	Departmen Water Well 2157 Austin, T	Dniler/Pump in	oll from (8)	UU) 803-0:	202 X7880	complete		i filed w d owner	г
on reverse sid	le of owner's co	ору Е	mail address: v	mier, we maince	ELL REP	ORT	1(035) 1(1)		compl	etion of	the wel	1.
Market Se	15-718 - 1	- (14)	A. WEL	L IDENTIF	CATION A	ND LOC	ATION	DATA		. 1	y X	4
1) OWNER Name:	Array IV	Control	Address:				City:			tate:	Zip:	** ***
	EJO WASTE	MNG.		E DEL NOR	TE		LAR	EDO		X_	7840	
	OCATION		to a face			. 14			Te	tate:	Zip:	
County:			Physical Addres	SS:			City:	EDO		X	7804	1
WEBB COUNTY 59 & LOS CENTENARIOS					56005	LAN	GPS Datum		Eleva			
3) Type of Work Lat. 27.554393 Long. 99.15					T Environ	mental So	Boring Dom	estic 🗍	Industr	ial 🔲	Frac	
New Well ☐ Reconditioning ☐ Proposed Use (check) ☐ Monitor ☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ Frace ☐ Replacement ☐ Deepening ☐ Irrigation ☐ Injection ☐ Extraction ☐ De-watering ☐ Testwell ☐ Rig Supply ☐ Stock or Livestock ☐ Public Supply — If Public Supply, were plans approved? ☐ Yes ☐ N						K						
Other	ur 🗀 Dechem	ing .	Other			l Public Su	pply II	rubile Supply, were	highes app	107001		
5) Drilling	Date		6) Diameter	of Hole		7) Drill	ing Meth	od (check) 🗆 D	riven 🖾 A	Air Rotai	y Ц	viuo Rocary
Started		25/2015	Dia. (in)	From (ft)	To (ft)			ammer 🔲 Cable To	ol U Jette	м П н	OHOW 50	em Auger
Completed	1/	25/2015	6-1/4	0	30	-		ion Other	0 77.1-		Straight	Wall
Number of ic	lentical wells d	rilled				[8] Bore	ehole Co		Open Hole	: ப	Strangin	, Wall
at this location	on:				<u></u>	Unde	r-reamed	Filter Packed [_ Other	VOD TO	00	
From (ft.)	To (ft.)			lor of format	tion material	Filter pad	ked interv	al from 30 ft. to: 17 ik Pipe, and W	ell Scree	n Dat	a	N 1
0	13		Y CLAY			9) Cas	New	Steel, Plastic, etc.	CII OCI CC	Settin	ng (ft)	Gage
13	30	RED	CLAY			Día.	Or	Perf., Slotted, etc			-0 ()	Casing
		-		-		(in.)	Used	Screen Mfg., if co	mmercial	From	То	Screen
-						2	N	PVC SCH 80		18	+2	
							N	PVC SCH 80		28	18	0.010"
						2	N_	SLOTTED		20	10	0.010
		B52-S				-						
						10) An	nular S	eal Data: i.e. (fron	0 ft. to 10	0 ft. <u>15</u> s	acks of g	ement)
						from: 11	Off. to: Off.	2 sacks of <u>CEM</u> 1. 2 sacks of <u>BEN</u>	FONITI	2		
						from: 1	Head: TR	EMIE Scaled By:	A&F	2		
14) Plugge	d UW	ell plug	e roverse side of V ged within 48	hours	in necessary)	Distance	to septic to	ield or other concer Tank: 150ft.	trated cont Distant	ce to Pr	operty I	Line: 150 ft
Casing left in	well:	Cement	Bentonite place	in well:		Method	of Measur	ement: OWNER	Appro		Variano	
From (ft)		From (f	To (f) #Sacks or	Material used	11) Surface Completion Completed by Driller? ✓ Surface Slab Installed ✓ Surface Sleeve Installed						
									Surrace S Alternativ			cad
######################################							ss Adapter		Steel Cas		zuule O:	y
						Othe			OLCEI CAS	-		
15) Type I	ump			_		12) W	ater Lev	ft. Date: <u>2/14/15</u>				
☐ Turbine	☐ Jet		Submersible 🔲	Cylinde	er	Artesiar		gpm Method o	f Measure	ment_		
Other N/						-	ckers:	,5)				
	p bowls, cylind	ler, jet, etc.	R.				уре	Depth	Туг	oe .		Depth
16) Water	Test			ted 🖾 C	wl	-	Jpo					
			tted 🗌 Estima	· —	лпег	-						
Yield:	gpm with		awdown after	hrs		1						
17) Water	Quality	tinat an	alvais mada? 🗖	Ves 🖾 No Did	vou knowingly	penetrate a	strata whi	ch contains injuriou	s constitue	nts? 🔲	Yes 🗵	No
If yes, Type	ta: <u>Lo</u> Wasa c Swater	nemicai an	atysis made:	103 🖂 110 210	, 0.2 11117 1111.2.5	r	_					-40-04
Check One:	☐ Naturally p	- oor-quality	y groundwater t	уре 🗖 І	Hydrocarbons (i.	e. gas, oil,	etc.) 🔲 Ha	ızardous material/w	aste contar	ninatioi	t encou	Hereu
					no described mal	ll. Inturiou	water or	constituents was end	ountered a	ind the		
I certify to	hat while drillir as informed the	ig, deepeni it such wel	ng, or otnerwise I must be comple	ted or plugged in	1 Such Guganner	us to throng	l injury or	pollution.				
18) Comp	any & Indi	vidual's	Name: (type	or print)	KOW.	eld -	11/2	1115		. No.:		77.51
		_					City: AT	HENS S	tate: TX	in terror	Zip: 75	751
By signing th	is well report,	ou certify	that you drilled	or supervised the	drilling of this	vell and the	at each and	all of the statement	s nerein ar	ettues	nu corr	
Signature:	Konald	7	Elles_	ک ــــــــــــــــــــــــــــــــــــ	Date /	>	Name:	Unlicens	ed Assistant	printed)		
TOLD FOR	Licensed Driller		er	DLR (Original)		Lando	vner (copy	- 111	r/Pump In	istaller	(copy)	
TIDEKTOR	CIT OUT II II I											

ditional information or comments:	 	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or the person for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		
v.comerum en		
		140.

This form must be Texas Department of Licensing and Regulation Attention Owner: Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.well@license.state.tx.us Web address: www.tdlr.tcxas.gov completed and filed with the Confidentiality Privilege Notice department and owner on reverse side of owner's copy within 60 days upon WELL REPORT completion of the well. A. WELL IDENTIFICATION AND LOCATION DATA 1) OWNER State: Zip: Address: 78401 LAREDO TX 1116 CALLE DEL NORTE RANCHO VIEJO WASTE MGN 2) WELL LOCATION City: State: Zip: Physical Address: County: 78041 TX LAREDO 59 & LOS CENTENARIOS WEBB COUNTY Lat. 27.554394 Long. 99.157043 **GPS Datum** Elevation 3) Type of Work ☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ Frac 4) Proposed Use (check) ⊠ Monitor ☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ F Irrigation ☐ Injection ☐ Extraction ☐ De-watering ☐ Testwell ☐ Rig Supply ☐ Stock or Livestock New Well Reconditioning Replacement Deepening
Other ☐ Public Supply — If Public Supply, were plans approved? ☐ Yes ☐ No Other 7) Drilling Method (check) 🗆 Driven 🖾 Air Rotary 🔲 Mud Rotary 5) Drilling Date 6) Diameter of Hole ☐ Bored ☐ Air Hammer ☐ Cable Tool ☐ Jetted ☐ Hollow stem Auger Started 1/26/2015 Dia. (in) From (ft) To (ft) Completed 1/27/2015 6-1/4 0 92 Reverse Circulation Other 12-1/4 30 8) Borehole Completion Open Hole Straight Wall n Number of identical wells drilled 🔲 Under-reamed 🛛 Filter Packed 🔲 Other at this location: Description and color of formation material Filter packed interval from 92 ft, to: 78 ft, Size: 12X20 Type From (ft.) To (ft.) 9) Casing, Blank Pipe, and Well Screen Data SANDY CLAY 13 40 **RED CLAY** New Steel, Plastic, etc. Setting (ft) Gage 13 40 60 BLUE CLAY Dia. Or Perf., Slotted, etc. Casing Screen 92 LAYERED RED CLAY & SANDSTONE Screen Mfg., if commercial From To (in.) Used 60 PVC SCH 80 80 +2 **PVC SCH 80** 0.010" N SLOTTED 90 80 B52-D PVC SCH 40-Surface 30 8 10) Annular Seal Data: i.e. (from 0 ft. to 100 ft. 15 sacks of coment) from: 10ft. to: 0ft. 2 sacks of CEMENT from: 78ft, to: 10ft, 6 sacks of BENTONITE Method Used: TREMIE Sealed By: A&F (Use reverse side of Well Owner's copy, If necessary) 14) Plugged ■ Well plugged within 48 hours Distance to septic field or other concentrated contamination: 150 ft. Distance to Property Line: 150ft. Distance to Septic Tank: 150ft. Method of Measurement: OWNER Approved by Variance #: Casing left in well: Cement/Bentonite placed in well: Completed by Driller?

✓ Yes 11) Surface Completion To (ft) #Sacks or Material used From (ft) To (ft) From (ft) Surface Slab Installed ☐ Surface Sleeve Installed Pitless Adapter Used ☐ Alternative Procedure Used Other ☐ Steel Cased 15) Type Pump 12) Water Level ☐ Turbine ☐ Jet Submersible ☐ Cylinder Static level 11.29ft. Date: 2/14/15 Other N/A Artesian Flow gpm Method of Measurement Depth to pump bowls, cylinder, jet, etc., 13) Packers: Depth 16) Water Test Type Depth Type ☑ Other Type test Pump Bailer Jetted Estimated gpm with ft. drawdown after hrs 17) Water Quality Depth of Strata: 80 Was a chemical analysis made? 🗌 Yes 🖾 No Did you knowingly penetrate a strata which contains injurious constituents? 🔲 Yes 🖾 No If yes, Type of water Check One: Naturally poor-quality groundwater type ____ Hydrocarbons (i.e. gas, oil, etc.) Hazardous material/waste contamination encountered Other (describe) 🔲 I certify that while drilling, deepening, or otherwise altering the above described well, injurious water or constituents was encountered and the landowner was informed that such well must be completed or plugged in such a pranner as to avoid injury or pollution. Lic. No.: 3243 18) Company & Individual's Name: (type or print) Koneld City: ATHENS **PO BOX 348** Zip: 75751 State: TX Address: By signing this well report, you certify that you drilled or supervised the drilling of this well and that each and all of the statements herein are true and correct. 201 6 1 Name: Signature: Unlicensed Assistant (printed)

TDLR (Original)

OVER

Landowner (copy)

Driller/Pump Installer (copy)

TDLR FORM 001 WWD / 11-13

Addit	ional information or comments:			

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
10/52=110		
	2 0117020-85	
y-111		
Taxable.		

Unlicensed Assistant (printed)

Driller/Pump Installer (copy)

Texas Department of Licensing and Regulation This form must be Attention Owner: Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.wcll@license.state.tx.us Web address: www.tdlr.texas.gov completed and filed with the Confidentiality Privilege Notice department and owner on reverse side of owner's copy within 60 days upon WELL REPORT completion of the well. A. WELL IDENTIFICATION AND LOCATION DATA 1) OWNER Name: State: Zip: 78401 RANCHO VIEJO WASTE MNG. 1116 CALLE DEL NORTE LAREDO TX 2) WELL LOCATION County: Physical Address: City: State: Zip: 78041 59 & LOS CENTENARIOS LAREDO TX WEBB COUNTY Long. 99.152657 3) Type of Work Lat. 27.566898 **GPS** Datum Elevation ☐ Environmental Soil Boring ☐ Domestic ☐ Industrial ☐ Frac
☐ De-watering ☐ Testwell ☐ Rig Supply ☐ Stock or Livestock
☐ Public Supply — If Public Supply, were plans approved? ☐ Yes ☐ No New Well Reconditioning Monitor Monitor 4) Proposed Use (check) Replacement Deepening
Other ☐ Irrigation ☐ Injection ☐ Extraction ☐ Other 5) Drilling Date 7) Drilling Method (check) Driven Air Rotary Mud Rotary 6) Diameter of Hole Started 2/5/2015 ☐ Bored ☐ Air Hammer ☐ Cable Tool ☐ Jetted ☐ Hollow stem Auger Dia. (in) From (ft) To (ft) Completed 2/6/2015 6-1/4 0 105 ☐ Reverse Circulation ☐ Other 12-1/4 0 40 Number of identical wells drilled 8) Borehole Completion Open Hole Under-reamed Filter Packed Other at this location: From (ft.) Description and color of formation material To (ft.) Filter packed interval from 105 ft. to: 92 ft, Size:12X20 Type 9) Casing, Blank Pipe, and Well Screen Data SANDY CLAY 13 35 13 **RED CLAY** New Steel, Plastic, etc. Setting (ft) Gage BLUE CLAY & SANDSTONE 35 50 Dia. Or Perf., Slotted, etc Casing Screen Mfg., if commercial 50 100 DARK RED CLAY (in.) Used From Screen PVC SCH 80 PVC SCH 80 100 105 SANDSTONE & RED CLAY +2 SLOTTED 103 93 0.010" B55-D PVC SCH 40 -40 0 SURFACE 10) Annular Seal Data: i.e. (from 0 ft. to 100 ft. 15 sacks of cement) from: 10ft. to: 0ft. 2 sacks of CEMENT from: <u>92</u>ft. to: <u>10</u>ft. <u>6</u> sacks of <u>BENTONITE</u> Method Used: TREMIE Sealed By: A&F (Use reverse side of Well Owner's copy, If necessary) ■ Well plugged within 48 hours 14) Plugged Distance to septic field or other concentrated contamination: 150ft, Distance to Septic Tank: 150ft. Distance to Property Line: 150ft. Casing left in well: Cement/Bentonite placed in well: Method of Measurement: OWNER Approved by Variance #: From (ft) To (ft) From (ft) To (ft) #Sacks or Material used 11) Surface Completion Completed by Driller? X Yes Surface Slab Installed ☐ Surface Sleeve Installed ☐ Pitless Adapter Used ☐ Alternative Procedure Used □ Other Steel Cased 15) Type Pump 12) Water Level ☐ Turbine ☐ Jet Static level 10.28ft. Date: 2/14/15 ☐ Submersible ☐ Cylinder Other N/A Artesian Flow gpm Method of Measurement Depth to pump bowls, cylinder, jet, etc. 13) Packers: 16) Water Test Type Depth Type Depth Type test Pump Bailer Jetted Estimated Other gpm with ft, drawdown after 17) Water Quality Depth of Strata: 93 Was a chemical analysis made? Tyes 🖾 No Did you knowingly penetrate a strata which contains injurious constituents? Tyes 🖾 No If yes, Type of water Check One: Naturally poor-quality groundwater type _____ Hydrocarbons (i.e. gas, oil, etc.) Hazardous material/waste contamination encountered Other (describe) 🔲 I certify that while drilling, deepening, or otherwise altering the above described well, injurious water or constituents was encountered and the landowner was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution. Lic. No.: 3243 18) Company & Individual's Name: (type or print) 2/1/5 Zip: 75751 **PO BOX 348** City: ATHENS Address: State: TX By signing this well report, you certify that you drilled or supervised the drilling of this well and that each and all of the statements herein are true and correct.

Signature: Konold D. Sulle 2/6//5 Name:

mold

TDLR (Original)

OVER

Landowner (copy)

TDLR FORM 001WWD / 11-13

	Additional in	information or comments:	
		3000 3000 3000 3000 3000	
	li	N2	
*		×.	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
11100		
7.11.20.		
UPC-V SINI		
		The state of the s
		
	-	
		*

Unlicensed Assistant (printed)

Driller/Pump Installer (copy)

Texas Department of Licensing and Regulation This form must be Attention Owner: completed and filed with the Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.well@license.state.tx.us Web address: www.tdir.texas.gov Confidentiality Privilege Notice department and owner on reverse side of owner's copy within 60 days upon completion of the well, WELL REPORT A. WELL IDENTIFICATION AND LOCATION DATA 1) OWNER State: Zin: Address: LAREDO TX 78401 1116 CALLE DEL NORTE RANCHO VIEJO WASTE MNG. 2) WELL LOCATION State: Zip: County: Physical Address: City: LAREDO TX 78041 WEBB COUNTY 59 & LOS CENTENARIOS **GPS Datum** Elevation 3) Type of Work Lat. 27.576437 Long. 99.152254 Reconditioning New Well Replacement Deepening Other 5) Drilling Date 6) Diameter of Hole 7) Drilling Method (check) Driven X Air Rotary Mud Rotary ☐ Bored ☐ Air Hammer ☐ Cable Tool ☐ Jetted ☐ Hollow stem Auger Started 2/11/2015 Dia. (in) From (ft) To (ft) 2/11/2015 ☐ Reverse Circulation ☐ Other Completed 6-1/4 a 32 8) Borehole Completion Open Hole Number of identical wells drilled ☐ Under-reamed ☒ Filter Packed ☐ Other at this location: To (ft.) Description and color of formation materia Filter packed interval from 32 ft. to: 19 ft. Size:12X20 Type From (ft.) 9) Casing, Blank Pipe, and Well Screen Data 13 SANDY CLAY 13 35 **RED CLAY** New Steel, Plastic, etc. Setting (ft) Gage Casing Dia Or Perf., Slotted, etc. (in.) Used Screen Mfg., if commercial From Screen PVC SCH 80 20 +2 N PVC SCH 80 0.010" N SLOTTED 30 20 B58-S 10) Annular Seal Data: i.e. (from 0 ft. to 100 ft. 15 sacks of coment) from: 10ft. to: 0ft. 2 sacks of CEMENT from: 19ft. to: 10ft. 1 sacks of BENTONITE Method Used: TREMIE Sealed By: A&F (Use reverse side of Well Owner's copy, If necessary) 14) Plugged Well plugged within 48 hours Distance to septic field or other concentrated contamination: 150ft. Distance to Septic Tank; 150ft. Distance to Property Line: 150ft. Method of Measurement: OWNER Approved by Variance#: Casing left in well: Cement/Bentonite placed in well: 11) Surface Completion Completed by Driller? X Yes To (ft) #Sacks or Material used From (ft) To (ft) From (ft) ☐ Surface Sleeve Installed Surface Slab Installed ☐ Alternative Procedure Used Pitiess Adapter Used Other Steel Cased 12) Water Level 15) Type Pump Static level 10.38ft. Date: 2/14/15 Turbine Jet 🗌 Submersible Cylinder gpm Method of Measurement Artesian Flow Other N/A 13) Packers: Depth to pump bowls, cylinder, jet, etc., 16) Water Test Туре Depth Туре Depth Type test 🗀 Pump 🔲 Bailer 🔲 Jetted 🔲 Estimated Other Yield: gpm with ft. drawdown after hrs 17) Water Quality Depth of Strata: 20 Was a chemical analysis made? Tyes 🖾 No Did you knowingly penetrate a strata which contains injurious constituents? Tyes 🖾 No If yes, Type of water Check One: 🔲 Naturally poor-quality groundwater type _____ 🔲 Hydrocarbons (i.e. gas, oil, etc.) 🗌 Hazardous material/waste contamination encountered Other (describe) I certify that while drilling, deepening, or otherwise altering the above described well, injurious water or constituents was encountered and the landowner was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution. DE1115 Lic. No.: 3243 18) Company & Individual's Name: (type or print) Roweld Address: PO BOX 348 State: TX Zip: 75751 City: ATHENS By signing this well report, you certify that you drilled or supervised the drilling of this well and that each and all of the statements herein are true and correct. Ĵ mard D. 6 12 Name:

TDLR (Original)

OVER

Landowner (copy)

TDLR FORM 001WWD / 11-13

ditional information	or comments:		 	
	a			
	•			

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		- CO
		WORLD AND THE PROPERTY OF THE
		,
		i i i i i i i i i i i i i i i i i i i
4		
L		

State: TX

Unlicensed Assistant (printed)

Dritter/Pump Installer (copy)

City: ATHENS

Name:

Landowner (copy)

Texas Department of Licensing and Regulation
Water Well Driller/Pump Installer Section
P.O. Box 12157 Austin, Texas 78711 Toll free (800) 803-9202 X7880
Email address: water.well@license.state.tx.us Web address: www.tdir.texas.gov This form must be completed and filed with the Attention Owner: Confidentiality Privilege Notice department and owner on reverse side of owner's copy within 60 days upon completion of the well. WELL REPORT A. WELL IDENTIFICATION AND LOCATION DATA 1) OWNER State: Zip: Address: 78401 TX LAREDO 1116 CALLE DEL NORTE RANCHO VIEJO WASTE MNG. 2) WELL LOCATION State: Zip: Physical Address: City: County LAREDO TX 78041 59 & LOS CENTENARIOS WEBB COUNTY **GPS Datum** Elevation Long. 99.152213 Lat. 27.576367 3) Type of Work New Well Reconditioning
Replacement Deepening
Other 4) Proposed Use (check) Monitor Environmental Soil Boring Domestic Industrial Frac Irrigation Injection Extraction De-watering Testwell Rig Supply Stock or Livestock Public Supply --- If Public Supply, were plans approved? Yes No 7) Drilling Method (check) 🗆 Driven 🗵 Air Rotary 🔲 Mud Rotary 5) Drilling Date 6) Diameter of Hole ☐ Bored ☐ Air Hammer ☐ Cable Tool ☐ Jetted ☐ Hollow stem Auger 2/12/2015 Started Dia. (in) From (ft) To (ft) 2/12/2015 150 Reverse Circulation Other Completed 6-1/4 0 8) Borehole Completion Open Hole ☐ Straight Wall 40 Number of identical wells drilled 12-1/4 n ☐ Under-reamed Filter Packed Other at this location: Description and color of formation material Filter packed interval from 152 ft. to: 119 ft. Size:12X20 Type From (ft.) To (ft.) 9) Casing, Blank Pipe, and Well Screen Data SANDY CLAY 13 Gage Setting (ft) 50 **RED CLAY** Steel, Plastic, etc. New 13 100 LAYERED RED CLAY & SANDSTONE Dia. Or Perf., Slotted, etc Casing 50 Used Screen Mfg., if commercial From Screen DARK RED CLAY To 100 150 (in.) N PVC SCH 80 140 +2 PVC SCH 80 0.010" SLOTTED 150 140 N B58-D 8 PVC SCH 40-Surface 40 0 N 10) Annular Seal Data: i,e, (from 0 ft. to 100 ft. 15 sacks of cement) from: 10ft. to: 0ft. 2 sacks of CEMENT from: 119ft. to: 10ft. 8 sacks of BENTONITE
Method Used: TREMIE Sealed By: A&F (Use reverse side of Well Owner's copy, If necessary) Distance to septic field or other concentrated contamination: 150ft. Well plugged within 48 hours 14) Plugged Distance to Property Line: 150ft. Distance to Septic Tank: 150ft. Method of Measurement: OWNER Approved by Variance #: Cement/Bentonite placed in well: Casing left in well: 11) Surface Completion Completed by Driller? X Yes To (ft) To (ft) #Sacks or Material used From (ft) From (ft) Surface Slab Installed ☐ Surface Sleeve Installed Alternative Procedure Used ☐ Pitless Adapter Used Other ☐ Steel Cased 12) Water Level 15) Type Pump Static level 18.56ft. Date: 2/14/15 Turbine ☐ Jet Cylinder ☐ Submersible Artesian Flow gpm Method of Measurement Other N/A 13) Packers: Depth to pump bowls, cylinder, jet, etc., Depth 16) Water Test Type Depth Type Type test Pump Bailer Detted Estimated Other gpm with ft. drawdown after 17) Water Quality Depth of Strata: 140 Was a chemical analysis made? 🗌 Yes 🖾 No Did you knowingly penetrate a strata which contains injurious constituents? 🗋 Yes 🖾 No If yes, Type of water Check One: Naturally poor-quality groundwater type _____ Hydrocarbons (i.e. gas, oil, etc.) Hazardous material/waste contamination encountered Other (describe) I certify that while drilling, deepening, or otherwise altering the above described well, injurious water or constituents was encountered and the landowner was informed that such well must be completed or plugged in such a manner as to avoid injury or pollution. 18) Company & Individual's Name: (type or print) 21113 Lic. No.: 3243 Zip: 75751

By signing this well report, you certify that you drilled or supervised the drilling of this well and that each and all of the statements herein are true and correct.

OYER

6

TDLR (Original)

Address: PO BOX 348

Signature:

Konald

TDLR FORM 001 WWD / 11-13

used Driller/Pump Installer

ditional information or comments:	

WELL REPORT CONFIDENTIALITY NOTICE

TEX. OCC. CODE Title 12, Chapter 1901.251, authorizes the owner (owner or th eperson for whom the well was drilled) to request that information in Well Reports be made confidential. The Department shall hold the contents of the well report confidential and not a matter of public record if it receives, by certified mail, a written request to do so from the owner of the well, or from the person for whom the well was drilled.

From (ft)	To (ft)	Description and color of formation material
		×
		L
		3
		4
		4
-		
	-	
		- XIV
	and the second	A STATE OF THE STA

III-E.5-F Geotechnical Test Data

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Borehole	Depth (ft.)	Water Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Maxlmum Size (mm)	% <#200 Sieve	Hydraulic Conductivity (cm/sec)	Dry Density (pcf)	Compressive Strength (tsf)	Strain at Failure (%)
B-52	13.5	11.4	31	17	14	0.075	48				
B-52	27.5	6.7	NP	NP	NP	0,075	18				
B-52	40,5		85	25	60	0.075	99				
B-52	49.0	17,0	58	21	37	0,075	93				
B-52	60.0	8.1	45	18	27						
B-52	73.0	15.2	65	23	42						
B-52	77.0	7.7	45	18	27	0.075	62				
B-52	86,0	10,0	32	18	14	0.075	28				
B-52	88.0	10.7	86	25	61						
B-52	89.0	11.0	57	22	35						
B-52	98.0	8.0	47	18	29						
B-52	114.0	11.7	70	24	46				128.4	31.1	0.5
B-52	125.0	9.4	77	26	51						
B-52	140.0	11.0							129.9	54.2	0.4
B-52	141.0	12,6	58	23	35	0.075	97				
B-52	146.5	8.0	45	18	27	0,075	39	1.733×10(-9)			
B-55	14,0	14,3	61	22	39						
B-55	25.0	14.8	90	27	63						
B-55	27,5	13,3	85	26	59						
B-55	79.0		66	24	42			2.843x10(-7)			
B-55	98.0		34	17	17	0.075	26				
B-55	103.0		55	21	34	0.075	90				
B-55	128.0		50	19	31	0,075	85				
B-55	138.5	19.3	112	30	82						
B-58	12.5	20.6	67	24	43						
B-58	23.0	24.7	90	29	61						
B-58	28.0	27.5	85	28	57						
B-58	32.5	23.9	114	31	83						
B-58	57.0	13.7	89	25	64						
B-58	67.0	15.2	124	31	93						
B-58	95.5	11.4	54	20	34	0.075	44	1.942x10(-9)			
B-58	96.5	10.1							124.4	64.8	0.5
B-58	106.0	13.2	120	31	89	0.075	100				
B-58	148.5	10.0	63	22	41	0.075	94	5.424x10(-11)			
B-58	149,5	6,2							136.6	124.9	0.7

Pescadito Environmental Resource Center Laredo, Texas Project No: 15-1772

Data Summary

Atterberg Limits & Passing # 200 Sieve Report

CUENT:

CB&I

DATE OF REPORT:

2/5/2015

12005 Ford Road, Suite 600 Dallas, Texas 75234

PROJECT:

Pescadito Environmental Resource Center

STL Project No:

G15-1772

Webb County Laredo, Texas


Sample	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Passing # 200 Sieve (%)
Light greenish CLAY (CH)	75	16	59	75
Light reddish CLAY (CH)	83	23	60	98

Staff Engineer # 117596

Registered Engineering Firm # 8133

1341 W Mockingbird Lane, # 1200 W, Dallas, Texas 75247

Test Pit 1 Sample Results

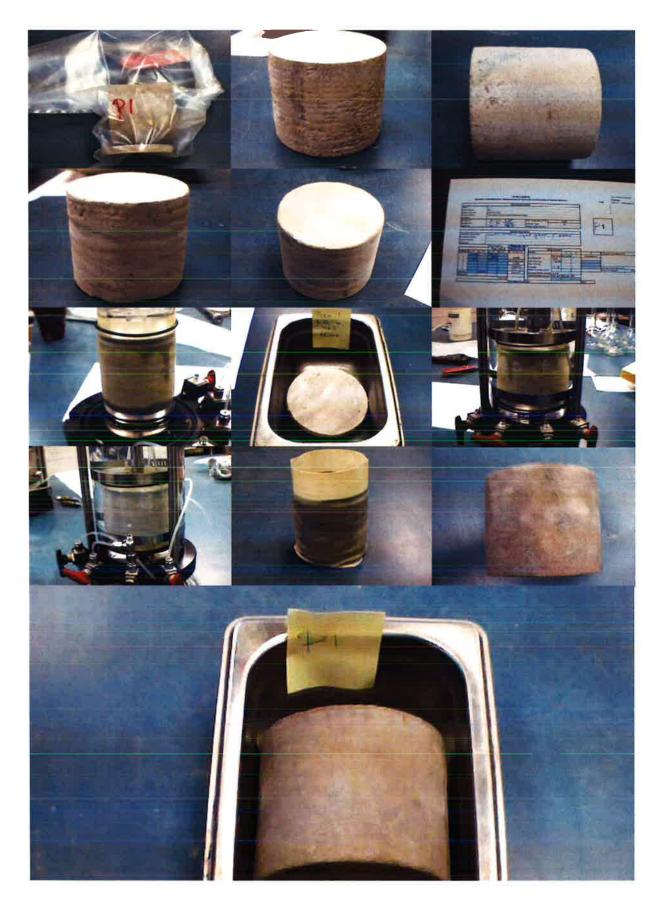
Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

Job No.: 04-4015-1038

Pore Volume:

ugro Pescadito Environmental Resource Center Client: STL ENGINEERS Project: Boring: B-52 146.5' Depth, ft:

SAMPLE:	Initial	Final		APPLIED PRESSURES:							
Weight:	702.3	705.5	g.	Inlet:	105.00 psi	Confining: 110.00 psi					
Height:	2.674	2.683		Outlet:	100.00 psi						
Diameter:	2.910	2,898	in.								
MC:	7.2	8.0	%								
Wet Density:	150.4	151.9	pcf								
Dry Density:	140.2	140.6	pcf								
Void Ratio:	0.224	0.221									
Saturation:	89.0	99.9	%								
Assumed Sp. Gr.:	2.750	2.750		INFLUENT	PIPETTE	EFFLUENT PIPETTE					
			Dia	meter:	1.128 cm	Diameter: 1.128 cm					
Area:	6.60	in ²	А	rea:	1.00 cm ²	Area: 1.00 cm					
Volume:	17.64	in ³									


ı			Diameter.	1.120 0111	Diameter.	1.120	Citi
ı	Area:	6.60 in ²	Area:	1.00 cm ²	Area;	1.00	cm ²
	Volume:	17.64 in ³				·	
ı	Solid Volume:	14 20 in ³	Ī				

Average water temp. 24.3 C* Initial Final						nal						
										Average	Hydraulic	Hydraulic Conductivity at
Init	ial	Fin	al	l _o	Eo	l _E	E,	Temp.	Time	Flow, ∆Q	Conductivity, k	20°C, k ₂₀
te	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
2015	16:10:00	3/27/2015	9:10:00	10.00	10.00	10.66	9.71	23.1	1020.00	0.48	3.534E-09	3.283E-09
3/27/2015	9:10:00	3/27/2015	15:20:00	10.66	9.71	10.80	9.61	23.3	370.00	0.12	2.462E-09	2.276E-09
3/27/2015	15:20:00	3/28/2015	19:50:00	10.80	9.61	11.50	9.18	25.3	1710.00	0.56	2.497E-09	2.205E-09
3/28/2015	19:50:00	3/29/2015	18:25:00	11.50	9.18	11.92	8.88	25.2	1355.00	0.36	2.030E-09	1.797E-09
3/29/2015	18:25:00	3/30/2015	9:35:00	11.92	8.88	12,21	8.70	24.5	910.00	0.24	1.960E-09	1.763E-09
3/30/2015	9:35:00	3/30/2015	16:00:00	12,21	8.70	12.36	8.64	24.2	385.00	0.10	2.070E-09	1.875E-09
3/30/2015	16:00:00	3/31/2015	8:50:00	12.36	8.64	12.67	8.49	24.2	1010.00	0.23	1.728E-09	1.565E-09
									_			
		_				-						
·												

			Hydraulic Conductivity, k	Hydraulic Conductivity a 20°C, k ₂₀	
Weighted A	verages:		1.934E-09	1.733E-09	
			(cm/	/sec)	

d by: TP Date: 3/25/2015 CT ed by: Date: 4/1/2015

3.44 in³

B-52 at 146.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

04-4015-1038 Job No.:

Project:

STL ENGINEERS Pescadito Environmental Resource Center Client:

B-58 95.5' Boring: Depth, ft:

SAMPLE:	Initial	Final		APPLIED PR	RESSURES						
Weight:	727.3	729.3	gr.	Inlet:	105.00		1	Confining:	110.00	psi	
Height:	2.857	2.863	in.	Outlet:	100.00					les.	
Diameter:	2.969	2.961	in.								
MC:	11.3	12.2	%	1							
Wet Density:	140.1	140.9	pcf	1							
Dry Density:	125.8	125.6	pcf								
Void Ratio:	0.324	0.327	- "								
Saturation:	93.2	100.0	%								
Assumed Sp. Gr.:	2.670	2.670		INFLUENT	PIPETTE			E	FLUENT	PIPETTE	1
			Dia	meter:	1.128	cm	1	Diam	eter:	1.128 cm	1
Area:	6.88	in ²	ρ	rea:	1.00	cm ²		Are	∍a:	1.00 cm ²]
Volume:	19.67 i	in ³						.1:			
Solid Volume:	14.64 i	in ³									
Pore Volume:	5.02 i	in ³					_				
verage water temp.	24.2	C°	Ir	nitial	Fi	nal					
											Hydra

al	Fin	aí	l _o	E _o	I _F	E _f	Temp.	Time	_		Hydraulic Conductivity at 20°C, k ₂₀
time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min.)	(cm ³)	(cm/sec)	(cm/sec)
16:10:00	3/27/2015	9:10:00	10.00	10.00	10.55	9.58	23.1	1020.00	0.49	3.691E-09	3.429E-09
9:10:00	3/27/2015	15:20:00	10.55	9.58	10.70	9.45	23.3	370.00	0.14	2.937E-09	2.716E-09
15:20:00	3/28/2015	19:50:00	10.70	9.45	11,38	8.80	25.3	1710.00	0.67	3.019E-09	2.667E-09
19:50:00	3/29/2015	18:25:00	11.38	8.80	11.81	8.35	25.2	1355.00	0.44	2.521E-09	2.232E-09
18:25:00	3/30/2015	9:35:00	11.81	8.35	12.09	8.09	24.5	910.00	0.27	2.303E-09	2.072E-09
9:35:00	3/30/2015	16:00:00	12.09	8.09	12,22	8.00	24.2	385.00	0.11	2.218E-09	2.009E-09
16:00:00	3/31/2015	8:50:00	12.22	8.00	12.52	7.73	24.2	1010.00	0.28	2.191E-09	1.984E-09
8:50:00	3/31/2015	14:40:00	12.52	7.73	12.63	7.66	23.9	350.00	0.09	1.996E-09	1.820E-09
	16:10:00 9:10:00 15:20:00 19:50:00 18:25:00 9:35:00 16:00:00	al Fin time date 16:10:00 3/27/2015 9:10:00 3/27/2015 15:20:00 3/28/2015 19:50:00 3/29/2015 18:25:00 3/30/2015 9:35:00 3/30/2015 16:00:00 3/31/2015	al Final time date time 16:10:00 3/27/2015 9:10:00 9:10:00 3/27/2015 15:20:00 15:20:00 3/28/2015 19:50:00 19:50:00 3/29/2015 18:25:00 18:25:00 3/30/2015 9:35:00 9:35:00 3/30/2015 16:00:00 16:00:00 3/31/2015 8:50:00	al Final I ₀ time date time (cm) 16:10:00 3/27/2015 9:10:00 10.00 9:10:00 3/27/2015 15:20:00 10.55 15:20:00 3/28/2015 19:50:00 10.70 19:50:00 3/29/2015 18:25:00 11.38 18:25:00 3/30/2015 9:35:00 11.81 9:35:00 3/30/2015 16:00:00 12.09 16:00:00 3/31/2015 8:50:00 12.22	al Final Io Eo time date time (cm) (cm) 16:10:00 3/27/2015 9:10:00 10.00 10.00 9:10:00 3/27/2015 15:20:00 10.55 9.58 15:20:00 3/28/2015 19:50:00 10.70 9.45 19:50:00 3/29/2015 18:25:00 11.38 8.80 18:25:00 3/30/2015 9:35:00 11.81 8.35 9:35:00 3/30/2015 16:00:00 12.09 8.09 16:00:00 3/31/2015 8:50:00 12.22 8.00	al Final Io Eo If time date time (cm) (cm) (cm) 16:10:00 3/27/2015 9:10:00 10.00 10.00 10.55 9:10:00 3/27/2015 15:20:00 10.55 9.58 10.70 15:20:00 3/28/2015 19:50:00 10.70 9.45 11.38 19:50:00 3/29/2015 18:25:00 11.38 8.80 11.81 18:25:00 3/30/2015 9:35:00 11.81 8.35 12.09 9:35:00 3/30/2015 16:00:00 12.09 8.09 12.22 16:00:00 3/31/2015 8:50:00 12.22 8.00 12.52	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
Weighted Averages:	2.141E-09	1.942E-09
	(cm	/sec)

TP ጉd by: Date: 3/22/2015 SBM Date: 4/1/2015

B-58 at 95.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

Job No.:

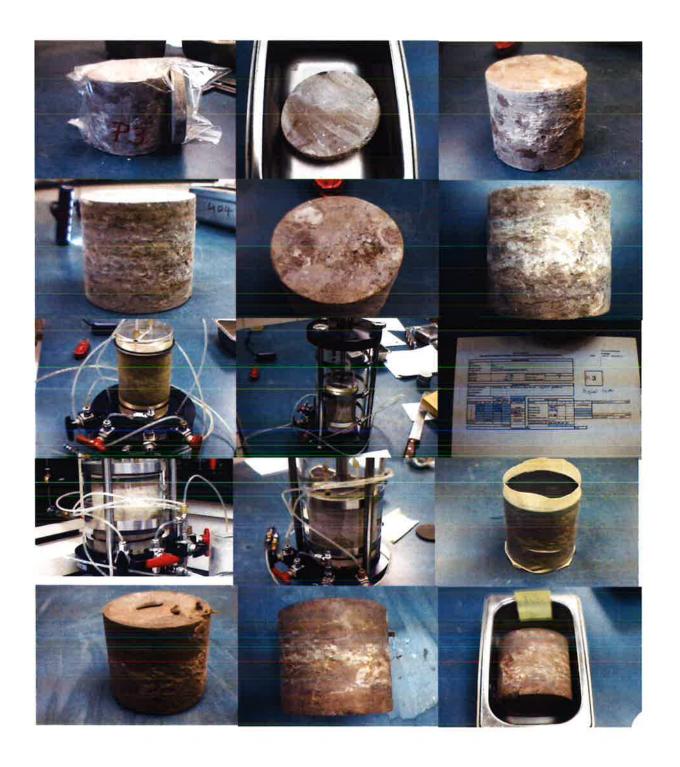
04-4015-1038

Project:

Pescadito Environmental Resource Center

Client:

STL ENGINEERS


Toject.		LIMIOIIIIEI	ital Hesoule	e Center	Olletti.	OTE LIVER	ILLIIO					
Boring: Depth, ft:	B-58 148.5'											
0.414		1 22 1	1 -		Tabel ico o		20					$-\sim$
SAM		Initial	Final		APPLIED PI			T				
	Weight:	812			Inlet:				Confining:	110.00	psi	
	Height:	2.977			Outlet:	100.00	psi					
	Diameter:	2.967	2.972	în.								
	MC:	5.9			1							
W	et Density:	150.3	151.3	pcf								
D	ry Density:	141.9	139.2	pcf	1							
\	Void Ratio:	0.223	0.246		1							
9	Saturation:	73.8	97.6	%	1							
Assume	ed Sp. Gr.:	2.780	2.780		INFLUENT	PIPETTE			E	FFLUENT	PIPETTE	1
				Diar	meter:	1.128			Dian	neter:	1.128 cm	
Ar	ea:	6.94	in ²	А	rea: 1.00 cm ²			Area: 1.00 cm		1.00 cm ²		
Volu	ıme:	20.65	in ³									
Solid Vo	olume:	16.33	in ³	İ								
Pore Vo	nlume:	4.33	in ³	l								
Average wa		24.2	C°	In	itial	Fi	nal	1				
									Ī			Hydraulic
		l		l						Average	Hydraulic	Conductivity
l Initi	ial	Fin	al le	l , .	E ₀	l _f	E,	Temp.	Time		Conductivity, k	
			r —	l ₀	1					(cm ³)		
t <u>e</u>	time	date	time	(cm)	(cm)	(cm)	(cm)	(C°)	(min _:)	_ `	(cm/sec)	(cm/sec)
2015	16:10:00	3/27/2015	9:10:00	10.00	10.00	10.03	9.99	23.1	1020.00	0.02	1.563E-10	1.452E-10
3/27/2015	9:10:00	3/27/2015	15:20:00	10.03	9,99	10.05	9.99	23.3	370.00	0.01	2.693E-10	2.490E-10
3/27/2015	15:20:00	3/28/2015	19:50:00	10.05	9.99	10.17	9.99	25.3	1710.00	0.06	2.914E-10	2.573E-10
3/28/2015	19:50:00	3/29/2015	18:25:00	10.17	9.99	10.20	9.99	25.2	1355.00	0.02	8.825E-11	7.812E-11
3/29/2015	18:25:00	3/30/2015	9:35:00	10.20	9.99	10.21	9,99	24.5	910.00	0.01	8.760E-11	7.879E-11
3/30/2015	9:35:00	3/30/2015	16:00:00	10.21	9.99	10.22	9.99	24.2	385.00	0.00	5.176E-11	4.688E-11
3/30/2015	16:00:00	3/31/2015	8:50:00	10,22	9.99	10.23	9.99	24.2	1010.00	0.00	3.946E-11	3.574E-11
3/31/2015	8:50:00	3/31/2015	14:40:00	10.23	9.99	10.23	9.99	23.9	350.00	0.00	5.694E-11	5.192E-11
												-

	Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀	
Weighted Averages:	6.005E-11	5.424E-11	
	(cm	/sec)	

Terrnd by:

TP CT Date:

3/22/2015

B-58 at 148.5'

Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter Method A - Constant Head

04-4015-1038 Job No.:

79'

Project:

Boring:

Depth, ft:

Pescadito Environmental Resource Center B-55

Client:

STL ENGINEERS

SAMPLE:	Initial	Final		APPLIED PF	ESSURES:		//	Or	
Weight:	517.5	527.72	gr.	Inlet:	102.00	psi		Confining: 105.0	00 psi
Height:	2.106	2.117	in.	Outlet:	100.00	psi			
Diameter:	2.904	2.939	ina						
MC:	13.0	16.6	%						
Wet Density:	141.3	140.0	pcf						
Dry Density:	125.0	120.1	pcf						
Void Ratio:	0.413	0.470							
Saturation:	89.3	99.6	%						
Assumed Sp. Gr.:	2.830	2.830	INFLUENT		PIPETTE			EFFLUEN ⁻	T PIPETTE
"			Diameter:		1.128	cm]	Diameter:	1.128 cm
Area:	6.78	in ²	А	rea:	1.00	cm ²	1	Area:	1.00 cm

Volume:	14.29	in ³
Solid Volume:	9.86	
Pore Volume:	4.43	in ³

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
te time date time (cm) (cm) (cm) (cm) (C°) (min.) (cm³) (cm/sec) (cm/s 2015 8:32:00 5/27/2015 9:19:00 10:00 10:00 14:58 5:40 23:7 47:00 4:59 1:422E-06 1:303E
2015 8:32:00 5/27/2015 9:19:00 10.00 10.00 14.58 5.40 23.7 47.00 4.59 1.422E-06 1.303E
5/27/2015 9:19:00 5/27/2015 9:56:00 14:58 5:40 17:35 2:70 23:9 37:00 2:74 1.076F-06 9.815F
07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00 07.00
5/27/2015 9:56:00 5/27/2015 10:31:00 17.35 2.70 19.50 0.68 23.5 35.00 2.09 8.673E-07 7.983E
5/27/2015 10:32:00 5/27/2015 11:37:00 5.00 20.00 9.30 15.70 23.5 65.00 4.30 9.632E-07 8.865E
5/27/2015 11:37:00 5/27/2015 12:19:00 9.30 15.70 11.50 13.53 23.8 42.00 2.19 7.574E-07 6.923E
5/27/2015 12:19:00 5/27/2015 14:19:00 11.50 13.53 16.00 9.18 23.7 120.00 4.43 5.369E-07 4.919E
5/27/2015 14:19:00 5/27/2015 14:58:00 16:00 9.18 17:80 8.01 23.9 39.00 1.49 5.544E-07 5.056E
5/27/2015 14:58:00 5/27/2015 15:48:00 17.80 8.01 19.10 6.70 23.7 50.00 1.31 3.800E-07 3.481E
5/28/2015 11:05:00 5/28/2015 11:32:00 8.00 24.00 8.96 23.17 24.7 27.00 0.90 4.826E-07 4.321 E
5/28/2015 11:32:00 5/28/2015 12:00:00 8.96 23.17 9.68 22.44 24.6 28.00 0.73 3.770E-07 3.383E
5/28/2015 12:00:00 5/28/2015 12:30:00 9.68 22.44 10.50 21.61 24.6 30.00 0.83 4.004E-07 3.593E
5/28/2015 12:30:00 5/28/2015 13:00:00 10.50 21.61 11.21 20.91 25.0 30.00 0.71 3.422E-07 3.043E
5/28/2015 13:00:00 5/28/2015 13:30:00 11.21 20.91 11.94 20.26 25.1 30.00 0.69 3.349E-07 2.971E
5/28/2015 13:30:00 5/28/2015 14:06:00 11.94 20.26 12.76 19.43 24.8 36.00 0.83 3.337E-07 2.981E
5/28/2015 14:06:00 5/28/2015 14:34:00 12.76 19.43 13.36 18.80 24.8 28.00 0.61 3.198E-07 2.857E
5/28/2015

Remarks: Sample was saturated to 96%, Deaired water was used. Micro-cracks were observed during preparation of specimen (see photos), that could have affected the hydraulic conductivity values. Liquid Limit = 66% Plastic Index = 42%

Hydraulic Conductivity, k	Hydraulic Conductivity at 20°C, k ₂₀
3.188E-07	2.843E-07

Weighted Averages:

(cm/sec)

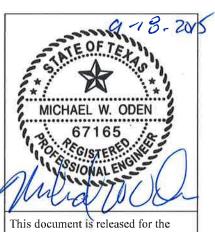
and by: TP Date: 5/22/2015 SBM 5/29/2015 Date:

Project:04.4015-1038

Pescadito Environmental Resource Center
Photos of permeability sample B-55 T-9 79'

, Texas

ASTM D 4318 - Wet


Fugro Consultants, Inc

Project No. 04.4015-1038

PLATE 1

5-1038 PESCADITO ENVIRONMENTAL RESOURCE CENTER/MISCI04.4015-1038.GPJ vargasm 6/2/15

III-E.5-G Subsurface Water Analytical Testing Results

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. #67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

July 29, 2010

Order No: 1007201

James Neyens TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 684-3156 FAX: (512) 329-8750

RE: Rancho Viejo

Dear James Nevens:

DHL Analytical received 5 sample(s) on 7/24/2010 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

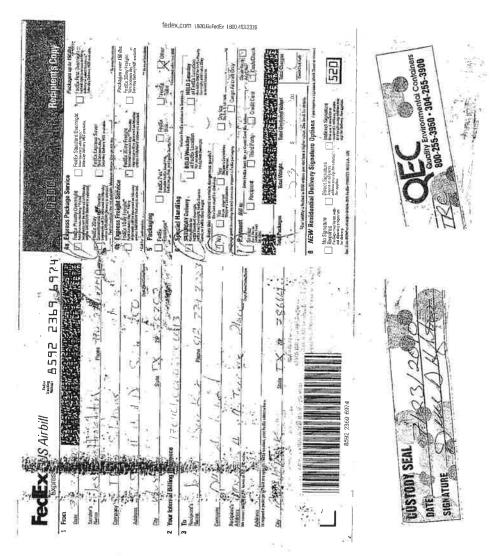
This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-10-3

Table of Contents

Miscellaneous Documents	3
Case Narrative	6
Sample Summary	7
Prep Dates Report	8
Analytical Dates Report	10
Sample Results	12
Analytical OC Summary Report	17

Technically Complete, March 11, 2016

2300 Doubte Creek Dr. ■ Round Rock, TX 78664
Phone (512) 388-8222 ■ FAX (512) 388-8229


Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 45617 CHAIN-OF-CUSTODY

ADDRESS: 50.5 PHONE: (5/2) 3 DATA REPORTED TO ADDITIONAL REPOR	7 E.	bolutions Huntland 6080 F lames F. IES TO:	Dr. AX/E-MAIL: Newye	Svite 5	25°O, E.	Aus	lin,	7.X 1876	DAT PO # PRO CLEI	E: !: JECT NT PR	7/2 LOCAT OJECT	13/20 100 OR #: <u>/7</u> 0	O/C NAN	DHL ME:	work Ran 3	ORDE cho COLLE	R #:_ Vi.	PAGE OF DE TOUR PAGE NOT PAGE
Authorize 5% surcharge for TRRP Report? Yes No	A=A L=LI	WATER SL= LIR O=C IQUID SO=	THER	Container	# of Containers	PRESE	F							4				FIELD NOTES
8-1 B-1 DVP B-6 B-13 B-10	01 07 03 04 05	7/23/10 7/23/10 7/23/10 7/23/10 7/23/10	0845 W 0845 W 0953 W 1612 W		まるななる	XXXX	X			\$/\$) 		/ \$/ \$/ X X X			0/0/			** METALS = Chromium
																		Aluminum, Copper, Iron, Manganese, Silver, and Zinc
		- V																
OTAL ELINQUISHED BY: (Signature) ELINQUISHED BY: (Signature) ELINQUISHED BY: (Signature)	<u>.</u> . <u>.</u>	Sed e	DATE/TIME 7/23/10 DATE/TIME C DATE/TIME DATE/TIME	RECEIVE RECEIVE RECEIVE	D BY: (S	ignature Ignature	2	1 1 9 3 a	الم	RU 1 E 2 E NC	SH 🗆 (-	π	RECEIVIN	G TEMI / SEALS R-BILL ELIVER	o: (∵7 5: □8 #:	<u> </u>	THERM #:

Sample Receipt Checklist

Client Name TRC Environmental Corp. Date Received: 7/24/2010 Work Order Number 1007201 Received by JB Reviewed by SS 9-26-10 Carrier name: FedEx 1day Shipping container/cooler in good condition? No 🗌 Not Present Custody seals intact on shippping container/cooler? Yes 🗹 No 🗍 Not Present Custody seals intact on sample bottles? Yes No 🗌 Not Present Chain of custody present? Yes 🗹 No 🗌 Chain of custody signed when relinquished and received? No 🗌 Chain of custody agrees with sample labels? Yes 🗹 No 🗆 Samples in proper container/bottle? No 🗆 Sample containers Intact? Yes 🗹 No 🗆 No 🗌 Sufficient sample volume for indicated test? Yes 🗹 All samples received within holding time? No 🔽 Container/Temp Blank temperature in compliance? No 🗌 Yes 🗸 1,2 °C No 🗍 Yes 🗌 Water - VOA vials have zero headspace? No VOA vials submitted 🗸 Water - pH acceptable upon receipt? No 🗀 Not Applicable NO Any No response must be detailed in the comments section below. Date contacted: 1/24(13 Person contacted Garnes Oppoula Regarding: Nitrate Hold Dime Per games proceed with analysis, is

PACTION Lagged in for requested analysis

Page 1 of 1

DHL Analytical Date: 07/29/10

CLIENT:

TRC Environmental Corp.

Project: Lab Order: Rancho Viejo 1007201 **CASE NARRATIVE**

The samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method E300 - Anions Analysis Method M4500-H+ B (18th Edition) - pH of a Water Method M2540C (18th Edition) - TDS Analysis Method M2510 B (18th Edition) - Specific Conductance

LOG IN

Samples were received and log-in performed on 7/24/10. A total of 5 samples were received. For Nitrate-N analysis the samples arrived at DHL Analytical outside of HoldTime. Proceeded with analysis as per the client. All Nitrate-N results are flagged with a "C" to designate this.

METALS ANALYSIS

For Metals analysis all samples were diluted prior to analysis due to the nature of the samples (high salt content).

For Metals analysis performed on 7/28/10 the matrix spike and matrix spike duplicate recoveries were below control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 7/28/10 the RPD for the serial dilution was slightly above control limits for Iron and Zinc. These are flagged accordingly. The PDS was within control limits for these analytes. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis all samples were diluted prior to analysis due to the nature of the samples (high conductivity).

DHL Analytical Date: 07/29/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Lab Order: 1007201 Work Order Sample Summary

Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recv'd
1007201-01	B-1		07/23/10 08:45 AM	07/24/10
1007201-02	B-1 DUP		07/23/10 08:45 AM	07/24/10
1007201-03	B-6		07/23/10 09:53 AM	07/24/10
1007201-04	B-13		07/23/10 04:12 PM	07/24/10
1007201-05	B-10		07/23/10 02:53 PM	07/24/10

Date: 07/29/10

CLIENT: Project: Lab Order:	TRC Environmental Corp. Rancho Viejo 1007201	mental Corp.			PREP DATES REPORT	ORT	
Sample ID	Client Sample ID	Collection Date	Матіх	Test Number	Test Name	Prep Date Batch ID	
1007201-01A	B-1	07/23/10 08:45 AM	Aqueons	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	
1007201-01B	B-I	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-1	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-1	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-1	07/23/10 08:45 AM	Aqueous	M4500-H+B	pH Preparation	07/26/10 12:00 PM 42155	
	B-1	07/23/10 08:45 AM	Aqueous	M2510B	Conductivity Preparation	07/26/10 09:32 AM 42138	
	B-1	07/23/10 08:45 AM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	
1007201-02A	B-I DUP	07/23/10 08:45 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	
1007201-02B	B-1 DUP	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-I DUP	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-1 DUP	07/23/10 08:45 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-I DUP	07/23/10 08:45 AM	Aqueous	M4500-H+B	pl4 Preparation	07/26/10 12:00 PM 42155	
	B-1 DUP	07/23/10 08:45 AM	Aqueous	M2510B	Conductivity Preparation	07/26/10 09:32 AM 42138	
	B-1 DUP	07/23/10 08:45 AM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	
1007201-03A	B-6	07/23/10 09:53 AM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	
1007201-03B	B-6	07/23/10 09:53 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-6	07/23/10 09:53 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-6	07/23/10 09:53 AM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-6	07/23/10 09:53 AM	Aqueous	M4500-H+B	pH Preparation	07/26/10 12:00 PM 42155	
	B-6	07/23/10 09:53 AM	Aqueous	M2510B	Conductivity Preparation	07/26/10 09:32 AM 42138	
	B-6	07/23/10 09:53 AM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	
1007201-04A	B-13	07/23/10 04:12 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	
1007201-04B	B-13	07/23/10 04:12 PM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-13	07/23/10 04:12 PM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-13	07/23/10 04:12 PM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	
	B-13	07/23/10 04:12 PM	Aqueous	M4500-H+B	pH Preparation	07/26/10 12:00 PM 42155	
	B-13	07/23/10 04:12 PM	Aqueous	M2510 B	Conductivity Preparation	07/26/10 09:32 AM 42138	
	B-13	07/23/10 04:12 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	
1007201-05A	B-10	07/23/10 02:53 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163	

1247
_
Date:

CLIENT: Project: Lab Order:	TRC Environmental Corp. Rancho Viejo 1007201	ental Corp.		щ	PREP DATES REPORT	П	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1007201-05B	B-10	07/23/10 02:53 PM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	42151
	B-10	07/23/10 02:53 PM	Aqueous	E300	Anion Preparation	07/26/10 09:00 AM 42151	4215!
	B-10	07/23/10 02:53 PM	Aqueous	M4500-H+B	pH Preparation	07/26/10 12:00 PM 42155	42155
	B-10	07/23/10 02:53 PM	Aqueous	M2510B	Conductivity Preparation	07/26/10 09:32 AM 42138	42138
	B-10	07/23/10 02:53 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156	42156

Date: 07/29/10

CLIENT: Project: Lab Order:	TRC Environs Rancho Viejo 1007201	TRC Environmental Corp. Rancho Viejo 1007201			ANALY	TICAL I	ANALYTICAL DATES REPORT	ORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1007201-01A	B-1	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 02:01 PM	ICP-MS3_100728A
1007201-01B	B-1	Aqueous	E300	Anions by IC method - Water	42151	01	07/26/10 11:01 AM	IC_100726A
	B-1	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 01:30 PM	IC_100726A
	B-1	Aqueous	E300	Anions by 1C method - Water	42151	1000	07/26/10 02:49 PM	IC_100726A
	B-1	Aqueons	M4500-H+ B	pH	42155	-	07/26/10 12:56 PM	TITRATOR 100726A
	B-1	Aqueous	M2510B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-1	Aqueous	M2540C	Total Dissolved Solids	42156	-	07/27/10 04:15 PM	WC_100727B
1007201-02A	B-1 DUP	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:11 PM	1CP-MS3_100728A
1007201-02B	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:15 AM	IC_100726A
	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 01:45 PM	IC_100726A
	B-1 DUP	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 03:48 PM	IC_100726A
	B-1 DUP	Aqueous	M4500-IH+ B	pl-l	42155	-	07/26/10 12:58 PM	TITRATOR_100726A
	B-I DUP	Aqueous	M2510B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-1 DUP	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007201-03A	B-6	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	S	0?/28/10 01:16 PM	ICP-MS3_100728A
1007201-03B	B-6	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:30 AM	IC_100726A
	B-6	Aqueous	E300	Anions by IC method - Water	42151	001	07/26/10 01:59 PM	IC_100726A
	B-6	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 04:02 PM	IC_100726A
	B-6	Aqueous	M4500-IH+ B	l+d	42155	1	07/26/10 01:00 PM	TITRATOR 100726A
	B-6	Aqueous	M2510 B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-6	Aqueous	M2540C	Total Dissolved Solids	42156	1	07/27/10 04:15 PM	WC_100727B
1007201-04A	B-13	Aqueous	SW6020	Trace Metals; ICP-MS - Water	42163	S	07/28/10 01:22 PM	ICP-MS3_100728A
1007201-04B	B-13	Aqueous	E300	Anions by IC method - Water	42151	01	07/26/10 11:44 AM	IC_100726A
	B-13	Aqueous	E300	Anions by IC method - Water	42151	100	07/26/10 02:13 PM	IC_100726A
	B-13	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 04:16 PM	IC_100726A
	B-13	Aqueous	M4500-H+ B	Hd	42155	1	07/26/10 01:01 PM	TITRATOR 100726A
	B-13	Aqueous	M2510B	Specific Conductance	42138	01	07/26/10 10:05 AM	WC_100726A
	B-13	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007201-05A	B-10	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:27 PM	ICP-MS3_100728A
								Ý

077	7//
_	_
Jate.	101
_	_

CLIENT: Project: Lab Order:	TRC Environn Rancho Viejo 1007201	TRC Environmental Corp. Rancho Viejo 1007201	Ċ		ANALYI	ICAL I	ANALYTICAL DATES REPORT	ORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Dilution Analysis Date	Run ID
1007201-05B	B-10	Aqueous	E300	Anions by IC method - Water	42151	10	07/26/10 11:58 AM	IC_100726A
	B-10	Aqueous	E300	Anions by IC method - Water	42151	1000	07/26/10 02:27 PM	IC_100726A
	B-10	Aqueons	M4500-H+B	Hď	42155	_	07/26/10 01:02 PM	TITRATOR_100726A
	B-10	Aqueous	M2510 B	Specific Conductance	42138	10	07/26/10 10:05 AM	WC_100726A
	B-10	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC 100727B

Date: 07/29/10

DHL Analytical

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo **Project No:** 170401 P.13

Lab Order: 1007201

Client Sample ID: B-1

Lab ID: 1007201-01 Collection Date: 07/23/10 08:45 AM

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	18,5	0.0500	0.150		mg/L	5	07/28/10 02:01 PM
Chromium	0.0319	0.0100	0.0300		mg/L	5	07/28/10 02:01 PM
Copper	0.0498	0.0100	0.0500	J	mg/L	5	07/28/10 02:01 PM
Iron	14.0	0.250	0.750		mg/L	5	07/28/10 02:01 PM
Manganese	3,67	0.0150	0.0500		mg/L	5	07/28/10 02:01 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 02:01 PM
Zinc	0.0650	0.0100	0.0250		mg/L	5	07/28/10 02:01 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	33900	300	1000		mg/L	1000	07/26/10 02:49 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:01 AM
Nitrate-N	ND	1:00	5.00	C	mg/L	10	07/26/10 11:01 AM
Sulfate	1810	100	300		mg/L	100	07/26/10 01:30 PM
oH	M	4500-H+ B					Analyst: JBC
pН	6.87	0	0		pH Units	1	07/26/10 12:56 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	106000	100	100		μιnhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable	60900	200	200		mg/L	t	07/27/10 04:15 PM

Oual	ifiers:	

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank Sample Result or QC discussed in the Case Narrative C

DF Dilution Factor Е

TPH pattern not Gas or Diesel Range Pattern

J Analyte detected between MDL and RL

MDL Method Detection Limit Ν Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RLReporting Limit S

Spike Recovery outside control limits

DHL Analytical Date: 07/29/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401 P.13 Lab Order: 1007201

Client Sample ID: B-1 DUP Lab ID: 1007201-02 Collection Date: 07/23/10 08:45 AM

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	SV	W6020					Analyst: KL
Aluminum	21.5	0.0500	0.150		mg/L	5	07/28/10 01:11 PM
Chromium	0.0344	0.0100	0.0300		mg/L	5	07/28/10 01:11 PM
Copper	0.0578	0.0100	0.0500		mg/L	5	07/28/10 01:11 PM
Iron	16.3	0.250	0.750		mg/L	5	07/28/10 01:11 PM
Manganese	4.02	0.0150	0.0500		mg/L	5	07/28/10 01:11 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:11 PM
Zinc	0.0611	0.0100	0.0250		mg/L	5	07/28/10 01:11 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	33300	300	1000		mg/L	1000	07/26/10 03:48 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:15 AM
Nitrate-N	ND	1.00	5.00	C	ing/L	10	07/26/10 11:15 AM
Sulfate	1700	100	300		ıng/L	100	07/26/10 01:45 PM
pН	M	4500-H+B					Analyst: JBC
pН	7.04	0	0		pH Units	1	07/26/10 12:58 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	105000	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	60700	200	200		mg/L	t	07/27/10 04:15 PM

Qualifiers: Value exceeds TCLP Maximum Concentration Level В Analyte detected in the associated Method Blank

С Sample Result or QC discussed in the Case Narrative DF Dilution Factor

Е TPH pattern not Gas or Diesel Range Pattern Analyte detected between MDL and RL

MDL Method Detection Limit Ν Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RLReporting Limit

S Spike Recovery outside control limits

Date: 07/29/10

DHL Analytical

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo **Project No:** 170401 P.13 Lab Order: 1007201

Client Sample ID: B-6

Lab ID: 1007201-03 Collection Date: 07/23/10 09:53 AM

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	ST	V6020					Analyst: KL
Aluminum	0.804	0.0500	0.150		mg/L	5	07/28/10 01:16 PM
Chromium	0.0105	0.0100	0,0300	J	mg/L	5	07/28/10 01:16 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:16 PM
Iron	0.770	0.250	0.750		mg/L	5	07/28/10 01:16 PM
Manganese	0.574	0.0150	0.0500		mg/L	5	07/28/10 01:16 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:16 PM
Zinc	0.0230	0.0100	0.0250	J	mg/L	5	07/28/10 01:16 PM
Anions by IC method - Water	E3	800					Analyst: JBC
Chloride	22600	300	1000		ing/L	1000	07/26/10 04:02 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/26/10 11:30 AM
Nitrate-N	ND	1.00	5.00	C	ing/L	10	07/26/10 11:30 AM
Sulfate	3120	100	300		mg/L	100	07/26/10 01:59 PM
ЭН	M	4500-H+B					Analyst: JBC
pH	6.95	0	0		pH Units	1	07/26/10 01:00 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	60300	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	34600	200	200		mg/L	10	07/2 <mark>7</mark> /10 04:15 PM

Qualifiers: * Value exceeds To	CLP	M
--------------------------------	-----	---

Maximum Concentration Level В Analyte detected in the associated Method Blank С Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

Е TPH pattern not Gas or Diesel Range Pattern Analyte detected between MDL and RL

Method Detection Limit MDL

Parameter not NELAC certified Ν ND Not Detected at the Method Detection Limit

Reporting Limit RL

S Spike Recovery outside control limits Page 14 of 26

DHL Analytical Date: 07/29/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401 P.13 Lab Order: 1007201

Lab ID: 1007201-04 Collection Date: 07/23/10 04:12 PM

Matrix: Aqueous

Client Sample ID: B-13

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	4.95	0.0500	0.150		mg/L	5	07/28/10 01:22 PM
Chromium	ND	0,0100	0,0300		mg/L	5	07/28/10 01:22 PM
Copper	0.0120	0.0100	0.0500	I	mg/L	5	07/28/10 01:22 PM
Iron	4.81	0,250	0.750		mg/L	5	07/28/10 01:22 PM
Manganese	2.21	0.0150	0.0500		mg/L	5	07/28/10 01:22 PM
Silver	ND	0.00500	0:0100		mg/L	5	07/28/10 01:22 PM
Zinc	0.0623	0.0100	0.0250		ing/L	5	07/28/10 01:22 PM
Anions by IC method - Water	E3	800					Analyst: JBC
Chloride	32900	300	1000		mg/L	1000	07/26/10 04:16 PM
Fluoride	ND	1,00	4.00		mg/L	10	07/26/10 11:44 AM
Nitrate-N	ND	1.00	5.00	C	mg/L	10	07/26/10 11:44 AM
Sulfate	1760	100	300		mg/L	100	07/26/10 02:13 PM
pН	M	4500-H+ B					Analyst: JBC
pН	6.78	0	0		pH Units	1	07/26/10 01:01 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	97200	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	58700	200	200		mg/L	Į.	07/27/10 04:15 PM

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

E TPH pattern not Gas or Diesel Range Pattern J Analyte detected between MDL and RL

Method Detection Limit

MDL Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RL Reporting Limit

S Spike Recovery outside control limits

Date: 07/29/10

DHL Analytical

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo **Project No:** 170401 P.13

Lab Order: 1007201

Client Sample ID: B-10

Lab ID: 1007201-05

Collection Date: 07/23/10 02:53 PM

Matrix: Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	3.99	0.0500	0.150		mg/L	5	07/28/10 01:27 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:27 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:27 PM
Iron	5.27	0_250	0.750		mg/L	5	07/28/10 01:27 PM
Manganese	0.858	0.0150	0.0500		mg/L	5	07/28/10 01:27 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:27 PM
Zinc	0.0292	0.0100	0.0250		mg/L	5	07/28/10 01:27 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	28700	300	1000		mg/L	1000	07/26/10 02:27 PM
Fluoride	ND	100	4.00		mg/L	10	07/26/10 11:58 AM
Nitrate-N	ND	1.00	5.00	C	mg/L	10	07/26/10 11:58 AM
Sulfate	1200	10.0	30.0		mg/L	10	07/26/10 11:58 AM
ρΗ	M	4500-H+ B					Analyst: JBC
рН	7.10	0	0		pH Units	1	07/26/10 01:02 PM
Specific Conductance	M	2510 B		S			Analyst: SW
Specific Conductance	88100	100	100		μmhos/cm	10	07/26/10 10:05 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	51700	200	200		mg/L	1	07/27/10 04:15 PM

Qualifiers:	*	Value exceeds TCLP Maximum Concentration Leve	1:
-------------	---	---	----

B Analyte detected in the associated Method Blank
C Sample Result or QC discussed in the Case Narrative

DF Dilution Factor E TPH pattern not

TPH pattern not Gas or Diesel Range Pattern

J Analyte detected between MDL and RL

MDL Method Detection Limit
N Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RL Reporting Limit
S Spike Recovery out

Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Work Order: Project:

1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Date: 07/29/10

r Toject.	Rancho Viejo							Kuin	D. ICI	COIM	_100/20A
Sample ID:	MB-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	MBLK	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 1	2:49 PM	Prep I	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Aluminum		ND	0.0300								
Chromium		ND	0.00600								
Copper		ND	0.0100								
Iron		ND	0.150								
Manganese		ND	0.0100								
Silver		ND	0.00200								
Zinc		ND	0.00500								
Sample ID:	LCS-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	LCS	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 1	2:54 PM	Prep D)ate:	07/27/10
Analyte	27	Result	RL -	SPK value	Ref Val	%REC	LowLimit	HighLimit	-		Limit Qual
Aluminum		5.05	0.0300	5.00	0	101	80	120			
Chromium		0.204	0.00600	0.200	0	102	80	120			
Copper		0.204	0.0100	0.200	0	102	80	120			
Iron		5:12	0.150	5.00	0	102	80	120			
Manganese		0.202	0.0100	0.200	0	101	80	120			
Silver		0.197	0.00200	0.200	0	98.7	80	120			
Zinc		0.200	0.00500	0.200	0	99.8	80	120			
	T CCT 101 CC	n . 1 m	401.60				GW1/080		** *.		~
Sample ID:	LCSD-42163	Batch ID:	42163	100000	TestNo:		SW6020		Units:		mg/L
SampType:	LCSD	Run ID:	ICP-MS3_		Analysis 1		07/28/10 0		Prep D		07/27/10
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	%RPD		Limit Qual
Aluminum		4.83	0.0300	5.00	0	96.5	80	120	4.50	15	
Chromium		0.196	0.00600	0.200	0	98.2	80	120	3.80	15	
Copper		0.195	0.0100	0.200	0	97.7	80	120	4.31	15	
Iron		4.85	0.150	5.00	0	97.1	80	120	5.26	15	
Manganese		0.195	0.0100	0.200	0	97.6	80	120	3.42	15	
Silver		0.192	0.00200	0.200	0	95.8	80	120	2.98	15	
Zinc		0.189	0.00500	0.200	0	94.4	80	120	5.56	15	
Sample ID:	1007201-01A SD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	SD	Run ID:	ICP-MS3_1	100728A	Analysis I	Date:	07/28/10 02		Prep D		07/27/10
Analyte		Result	RL	SPK value		%REC	LowLimit	HighLimit		RPD I	Limit Qual
Aluminum		19.5	0.750	0	18.5				5.21	10	
Chromium	¥.	0	0.150	0	0.0319				0	10	
Copper		0.0534	0.250	0	0.0498				6.96	10	
Iron		16.0	3.75	0	14.0				13.8	10	R
Manganese		3.98	0.250	0	3.67				8.03	10	
Silver		0	0.0500	0	0				0	10	
Zinc		0.0742	0.125	0	0.0650				13.1	10	R
Sample ID:	1007201-01A PDS	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	PDS	Run ID:	ICP-MS3_1	00728A	Analysis I	Date:	07/28/10 02	2:12 PM	Prep Da	ate:	07/27/10
. 71			-		•				•		

-	ŭ.			
				•

В Analyte detected in the associated Method Blank RPD outside accepted control limits Qualifiers: DF RLReporting Limit Dilution Factor

Analyte detected between MDL and RL S Spike Recovery outside control limits MDLMethod Detection Limit J Analyte detected between SDL and RL Not Detected at the Method Detection Limit N ND

Date: 07/29/10

DHL Analytical

TRC Environmental Corp. 1007201 CLIENT:

Work Order:

ANALYTICAL QC SUMMARY REPORT

Work Order Project:	r: 1007201 Rancho Viejo				1		· (D: ICP-		100728A
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Aluminum		46.7	0.150	25.0	18.5	113	75	125			
Chromium		0.998	0.0300	1.00	0.0319	96.6	75	125			
Copper		1.01	0.0500	1.00	0.0498	95.8	75	125			
Iron		40.3	0.750	25.0	14.0	105	75	125			
Manganese		4.91	0.0500	1.00	3.67	124	75	125			
Silver		0.928	0.0100	1.00	0	92.8	75	125			
Zinc		0.946	0.0250	1:00	0.0650	88.0	75	125			
Sample ID:	1007201-01A MS	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	MS	Run ID:	ICP-MS3	_100728A	Analysis l	Date:	07/28/10 02	2:17 PM	Prep D	ate:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Aluminum		22.6	0.150	5.00	18.5	82.1	80	120			
Chromium		0.212	0.0300	0.200	0.0319	89.8	80	120			
Copper		0.236	0.0500	0.200	0.0498	92.9	80	120			
Iron		18.5	0.750	5.00	14.0	91.1	80	120			
Manganese		3.80	0.0500	0.200	3.67	65.8	80	120			S
Silver		0.182	0.0100	0.200	0	91.1	80	120			
Zinc		0,230	0.0250	0.200	0.0650	82.3	80	120			
Sample ID:	1007201-01A MSD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/L
SampType:	MSD	Run ID:	ICP-MS3_	_100728A	Analysis l	Date:	07/28/10 02	2:23 PM	Prep D	ate:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Aluminum		22.3	0.150	5.00	18.5	75.8	80	120	1.40	15	S
Chromium		0.209	0.0300	0.200	0.0319	88.4	80	120	1.40	15	
Copper		0.226	0.0500	0.200	0.0498	88.2	80	120	4.09	15	
lron		17.8	0.750	5.00	14.0	77.3	80	120	3.79	15	S
Manganese		3.71	0.0500	0.200	3.67	23.2	80	120	2.26	15	S
Silver		0.179	0.0100	0.200	0	89.6	80	120	1.60	15	

Qualifiers:

Zinc

Analyte detected in the associated Method Blank

0.226

0.0250

0.200

0.0650 80.3

80

В DF Dilution Factor

Analyte detected between MDL and RL

Method Detection Limit MDL

Not Detected at the Method Detection Limit

RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL

120

15

1.73

N Parameter not NELAC certified DHL Analytical Date: 07/29/10

CLIENT: TRC Environmental Corp.

Work Order: 1007201 Project: Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Sample ID:	ICV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg/L
SampType:	ICV	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 11	1:02 AM	Prep I	Date:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Aluminum		2.48	0.0300	2.50	0	99.2	90	110		
Chromium		0.0989	0.00600	0.100	0	98.9	90	110		
Copper		0.100	0.0100	0.100	0	100	90	110		
Iron		2.56	0.150	2.50	0	103	90	110		
Manganese		0.0988	0.0100	0.100	0	98.8	90	110		
Silver		0.0985	0.00200	0.100	0	98.5	90	110		
Zinc		0,101	0.00500	0.100	0	101	90	110		
Sample ID:	CCV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg/L
SampType:	CCV	Run ID:	ICP-MS3_1	100728A	Analysis 1	Date:	07/28/10 12	2:21 PM	Prep I	Date:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Aluminum		5.22	0.0300	5.00	0	104	90	110		
Chromium		0.205	0.00600	0.200	0	103	90	110		
Copper		0.205	0.0100	0.200	0	102	90	110		
Iron		5.12	0.150	5.00	0	102	90	110		
Manganese		0.205	0.0100	0.200	0	103	90	110		
Silver		0.207	0.00200	0.200	0	104	90	110		
Zinc		0.204	0.00500	0.200	0	102	90	110		
Sample ID:	CCV2-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg/L
SampType:	CCV	Run ID:	ICP-MS3_1	100728A	Analysis 1	Date:	07/28/10 02	2:28 PM	Ргер 🗅	Pate:
Analyte		Result	RL	SPK value	Ref Val		LowLimit	HighLimit	_	RPD Limit Qual
Aluminum		5.38	0.0300	5.00	0	108	90	110		•
Chromium		0.202	0.00600	0.200	0	101	90	110		
Copper		0.208	0.0100	0.200	0	104	90	110		
Iron		5.16	0.150	5.00	0	103	90	110		
Manganese		0.199	0.0100	0.200	0	99.4	90	110		
Silver		0.205	0.00200	0.200	0	103	90	110		
Zinc		0.200	0.00500	0.200	0	100	90	110		
				-2	-					

Qualifiers:	В	Analyte detected in the associated Method Blank	
	DF	Dilution Factor	

J Analyte detected between MDL and RL

MDL Method Detection Limit
ND Not Detected at the Method Detection Limit

RL Reporting Limit
S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

TRC Environmental Corp. 1007201 CLIENT:

Work Order: Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100726A

Date: 07/29/10

Troject.	Kaneno viejo							Kumi). IC_I	00/20	<i>,</i> ,,,
Sample ID:	LCS-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L
SampType:	LCS	Run ID:	IC_100726	A	Analysis	Date:	07/26/10 09	9:45 AM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD 1	Limit Qual
Chloride		9.51	1.00	10.00	0	95.1	90	110			
Fluoride		3.86	0.400	4.000	0	96.4	90	110			
Nitrate-N		4.90	0.500	5.000	0	98.1	90	110			
Sulfate		28.6	3,00	30.00	0	95.4	90	110			
Sample ID:	LCSD-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L
SampType:	LCSD	Run ID:	IC_100726	A	Analysis	Date:	07/26/10 09	9:58 AM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit Qual
Chloride		9,53	1,00	10,00	0	95.3	90	110	0,177	20	
Fluoride		3.84	0.400	4.000	0	96.0	90	110	0.465	20	
Nitrate-N		4.93	0.500	5,000	0	98.6	90	110	0.604	20	
Sulfate		28.3	3.00	30.00	0	94.3	90	110	1.19	20	
Sample ID:	MB-42151	Batch ID:	42151		TestNo:		E300		Units:		mg/L
SampType:	MBLK	Run ID:	IC_100726	A	Analysis	Date:	07/26/10 10):27 AM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD 1	Limit Qual
Chloride		ND	1.00					_			
Fluoride		ND	0.400								
Nitrate-N		ND	0,500								
Sulfate		ND	3,00								
Sample ID:	1007201-05B MS	Batch ID:	42151		TestNo:		E300		Units:		mg/L
SampType:	MS	Run ID:	IC_100726	4	Analysis	Date:	07/26/10 12	2:35 PM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD :	Limit Qual
Fluoride		39.7	4.00	40,00	0	99.2	90	110			
Nitrate-N		45.6	500	50.00	0	91.2	90	110			
Sulfate		1020	30.0	300.0	718.5	99.2	90	110			
Sample ID:	1007201-05B MSD	Batch ID:	42151		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC_100726	A.	Analysis	Date:	07/26/10 01	l:16 PM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Fluoride		40.6	4.00	40.00	0	101	90	110	2,25	20	
Nitrate-N		48.1	5.00	50.00	0	96.2	90	110	5.32	20	
Sulfate										30	
Sunate		1030	30.0	300.0	718.5	103	90	110	1.19	20	
Sample ID:	1007201-05B MS	1030 Batch ID:	30.0 42151	300.0	718.5 TestNo:	103	90 E 300	110	Units:	20	mg/L
	1007201-05B MS MS										mg/L 07/26/10
Sample ID:		Batch ID:	42151		TestNo:		E300 07/26/10 03		Units:	Date:	
Sample ID: SampType:		Batch ID: Run ID:	42151 IC_100726	A	TestNo:	Date:	E300 07/26/10 03	3:04 PM	Units:	Date:	07/26/10
Sample ID: SampType: Analyte		Batch ID: Run ID: Result	42151 IC_100726. RL	A SPK value	TestNo: Analysis Ref Val	Date: %REC	E300 07/26/10 03 LowLimit	3:04 PM HighLimit	Units:	oate: RPD	07/26/10
Sample ID: SampType: Analyte Chloride	MS	Batch ID: Run ID: Result 26600	42151 IC_100726. RL 1000	A SPK value 10000	TestNo: Analysis Ref Val	Date: %REC 93,5	E300 07/26/10 03 LowLimit 90	3:04 PM HighLimit	Units: Prep D %RPD	Pate: RPD	07/26/10 Limit Qual
Sample ID: SampType: Analyte Chloride Sample ID:	MS 1007201-05B MSD	Batch ID: Run ID: Result 26600 Batch ID:	42151 IC_100726. RL 1000	A SPK value 10000	TestNo: Analysis Ref Val 17200 TestNo: Analysis	Date: %REC 93,5	E300 07/26/10 03 LowLimit 90 E300 07/26/10 03	3:04 PM HighLimit	Units: Prep D %RPD Units: Prep D	Pate: RPD	07/26/10 Limit Qual mg/L

Qualifiers: В Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit Not Detected at the Method Detection Limit R RPD outside accepted control limits

RL Reporting Limit

Spike Recovery outside control limits S J Analyte detected between SDL and RL

N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100726A

Date: 07/29/10

-									=		
Sample ID: SampType:	ICV-100726 ICV	Batch ID:	R50483 IC_100726A		TestNo: Analysis	Date:	E300 07/26/10 09	9:23 AM	Units: Prep D		mg/L 07/26/10
Analyte		Result	RL	SPK value	Ref Val			HighLimit	_		Limit Qual
Chloride		24.6	1:00	25.00	0	98.5	90	110			
Fluoride		10.0	0.400	10.00	0	100	90	110			
Nitrate-N		12,6	0.500	12.50	0	101	90	110			
Sulfate		73.2	3.00	75.00	0	97.7	90	110			
Sample ID:	CCV1-100726	Batch ID:	R50483		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC_100726A	1	Analysis 1	Date:	07/26/10 12	2:18 PM	Prep D)ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD !	Limit Qual
Chloride		10.2	1.00	10.00	0	102	90	110			
Fluoride		3.92	0.400	4.000	0	98.1	90	110			
Nitrate-N		4.98	0.500	5.000	0	99.5	90	110			
Sulfate		28.9	3_00	30.00	0	96.4	90	110			
Sample ID:	CCV2-100729	Batch ID:	R50483		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC_100726A	A	Analysis 1	Date:	07/26/10 03	3:31 PM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Chloride		9.82	1.00	10.00	0	98.2	90	110			
Fluoride		3.90	0.400	4.000	0	97.4	90	110			
Nitrate-N		5:00	0.500	5.000	0	100	90	110			
Sulfate		29.2	3.00	30.00	0	97.3	90	110			
Sample ID:	CCV3-100726	Batch ID:	R50483		TestNo:		E300		Units:		mg/L
SampType:	CCV	Run ID:	IC_100726A	1	Analysis 1	Date:	07/26/10 04	4:44 PM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Chloride		9.70	1.00	10.00	0	97_0	90	110			
Nitrate-N		4.99	0.500	5.000	0	99.8	90	110			

В Qualifiers: Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

 MDI_{*} Method Detection Limit

ND Not Detected at the Method Detection Limit

RPD outside accepted control limits R

RL Reporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL

Ν Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100726A

Date: 07/29/10

Sample ID:	1007201-01B DUP	Batch ID:	42155		TestNo:		M4500-H+	В	Units:		pH Units
SampType:	DUP	Run ID:	TITRATOR	R_100726A	Analysis	Date:	07/26/10 12	2:57 PM	Prep D	ate:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Li	mit Qual
pН		6.98	0	0	6.870				1.59	5	

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

DHL Analytical Date: 07/29/10

CLIENT: Work Order: TRC Environmental Corp. 1007201

Rancho Viejo Project:

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100726A

Sample ID:	ICV-100726	Batch ID:	R50485		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	ICV	Run ID:	TITRATOR	L_100726A	Analysis 1	Date:	07/26/10 12	2:55 PM	Prep Dat	te: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPD Limit Qual
pН		9.99	0	10.00	0	99.9	99	101		
Sample ID:	CCV-100726	Batch ID:	R50485		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	CCV	Run ID:	TITRATOR	_100726A	Analysis 1	Date:	07/26/10 0	1:03 PM	Prep Dat	te: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD I	RPD Limit Qual
рН		7.01	0	7.000	0	100	97.1	102.9		

Analyte detected in the associated Method Blank В Qualifiers:

DF Dilution Factor

ND

MDL

Analyte detected between MDL and RL Method Detection Limit Not Detected at the Method Detection Limit R RPD outside accepted control limits

RLReporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J

Ν Parameter not NELAC certified DHL Analytical Date: 07/29/10

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007201

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100726A

Sample ID:	MB-42138	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	MBLK	Run ID:	WC_1007	26A	Analysis ?	Date:	07/26/10 1	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	luctance	ND	10,0							
Sample ID:	LCS-42138	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	LCS	Run ID:	WC_1007	26A	Analysis	Date:	07/26/10 1	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	luctance	1460	10.0	1413	0	103	95	105		
Sample ID:	1007201-01B-DUP	Batch ID:	42138		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	DUP	Run ID:	WC_1007	26A	Analysis	Date:	07/26/10 1	0:05 AM	Prep D	oate: 07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Conc	luctance	106000	100	0	106100			-	0.282	2

Qualifiers:	В	Analyte detected in the associated Method Blank
	DF	Dilution Factor

Analyte detected between MDL and RL MDL Method Detection Limit

Not Detected at the Method Detection Limit

R RPD outside accepted control limits RL Reporting Limit

Spike Recovery outside control limits S Analyte detected between SDL and RL J Ν Parameter not NELAC certified

TRC Environmental Corp. 1007201 CLIENT:

Work Order: Project:

Specific Conductance

12600

10.0

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

105

RunID: WC_100726A

Date: 07/29/10

Sample ID:	ICV-100726	Batch ID:	CONDW-7	/26/10	TestNo:		M2510 B		Units:		µmhos/cm
SampType:	ICV	Run ID:	WC_10072	6A	Analysis 1	Date:	07/26/10 10	0:05 AM	Prep D	Date:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD L	imit Qual
Specific Cond	luctance	12800	10.0	12880	0	99.6	95	105			
Sample ID:	CCV-100726	Batch ID:	CONDW-7	/26/10	TestNo:		M2510 B		Units:		µmhos/cm
SampType:	CCV	Run ID:	WC_10072	6A	Analysis l	Date:	07/26/10 10	0:05 AM	Prep D	Date:	07/26/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD L	imit Qual

98.1

12880

Qualifiers:	В	Analyte detected in the associated Method Blank
	DF	Dilution Factor

ND

Analyte detected between MDL and RL J MDL Method Detection Limit

Not Detected at the Method Detection Limit

R RPD outside accepted control limits RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J Ν Parameter not NELAC certified

CLIENT: TRC

TRC Environmental Corp.

Work Order: Project: 1007201 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727B

Date: 07/29/10

									_	
Sample ID:	MB-42156	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	MBLK	Run ID:	WC_1007	27B	Analysis	Date:	07/27/10 0	4:15 PM	Prep I	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolv	ved Solids (Residue, Fi	ND	10.0							-
Sample ID:	LCS-42156	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	LCS	Run ID:	WC_1007	27B	Analysis	Date:	07/27/10 0	4:15 PM	Ргер 🛭	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolv	ved Solids (Residue, Fi	728	10.0	745.6	0	97.6	90	113		
Sample ID:	1007188-01C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_1007	27B	Analysis	Date:	07/27/10 0	4:15 PM	Prep I	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolv	ved Solids (Residue, Fi	1130	10.0	0	1111			_	1.61	5
Sample ID:	1007192-03C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_1007	27B	Analysis	Date:	07/27/10 0	4:15 PM	Prep I	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolv	ed Solids (Residue, Fi	633	10.0	0	623.0			-	1.59	5

Qualifiers: B Analyte detected in the associated Method Blank

DF Dilution Factor
J Analyte detected between MDL and RL

MDL Method Detection Limit
ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit
S Spike Recovery

S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

August 03, 2010

Order No: 1007213

James Neyens TRC Environmental Corp. 505 East Huntland Drive Suite 250 Austin, Texas 78752

TEL: (512) 684-3156 FAX: (512) 329-8750

RE: Rancho Viejo

Dear James Neyens:

DHL Analytical received 3 sample(s) on 7/27/2010 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

Shad what

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-10-3

Table of Contents

Miscellaneous Documents	3
Case Narrative	5
Sample Summary	6
Prep Dates Report	7
Analytical Dates Report	8
Sample Results	9
Analytical OC Summary Report.	12

Technically Complete, March 11, 2016

2300 Double Creek Dr. ■ Round Rock, TX 78664 Phone (512) 388-8222 ■ FAX (512) 388-8229 Web: www.dhlanalytical.com E-Mail: login@dhlanalytical.com

№ 45618 CHAIN-OF-CUSTODY

- 700			10.00	
CL. TRC	7 1.11 18	DATE: PO #:	N. P. SHANO	- PAGE / OF /
ADDRESS: 505 C. Huntland Dr., Swike 25 PHONE: (572) 329 - 6080 FAX/E-MAIL: DATA REPORTED TO: James News	O AUSTIN , IN	PO #:	DHL WORK ORDER #:_	100 143
DATA REPORTED TO:	MO	PROJECT LOCATION OR NAM	AE: Kancho VI	4)0
ADDITIONAL REPORT COPIES TO:		CLENT PROJECT #:	2 401 collecto	R:
Authorize 5% surcharge for TRRP Report? Yes No S=SOIL P=PAINT W=WATER SL=SLUDGE A=AIR O=OTHER L=LIQUID SO=SOLID	PRESERVATION Na OH D			
Field DHL Lab # Date Time Matrix Typ	# of Containers # of Containers HCI HINO, H,50, □ NaOH ICE UNPRESERVED			FIELD NOTES
Ranch Well 01 7/25/2010 1233 W	121 X X 1 1		I KNI I KN	KANIONS = Chloride
8-18 02 7/25/2010 LYSO W	2 X X			Fluoride, Sulfate,
13-2 03 7/25/2010 1630 W	2 X X			and Nitrate.
				KMETALS = Chromic
				Alvininum, Copper.
				Iron Mancanese
				Iron, Manganese, Silver, and Zive.
OTAL		 		
	CEIVED BY: (Signature)	TURN AROUND TIME	LABORATORY USE ONLY:	50
ELIMOUIS/IED BY: (Signature) DATE/TIME RE	CEIVED BY/Signature)	RUSH 🗆 CALL FIRST	RECEIVING TEMP: 1-4	THERM #: EN INTACT #@ NOT USED
ELINQUISHED BY: (Signature) DATE/TIME RE	CEIVED BY: (Signature)	2 DAY O	CUSTODY SEALS: G BROKE CARRIER BILL #:	EN GINTACT WINOTOSED
□ DHL DISPOSAL @ \$5.00 each	□ Return	OTHER O	CHAND DELIVERED	

Sample Receipt Checklist

Client Name TRC Environmental Corp.	Date	Date Received: 7/27/2010					
Work Order Number 1007213			Receiv	red by JB			
Checklist completed by: Signature and	10-	7/27/10	Review	ved by	55	7-27-70 Date	
	Carrie	r name: <u>Hand De</u>	allvered				
Shipping container/cooler in good condition?		Yes 🗹	No 🗌	Not Present			
Custody seals intact on shippping container/cod	oler?	Yes 🗌	No 🗆	Not Present	V		
Custody seals intact on sample bottles?		Yes 🗌	No 🗔	Not Present	V		
Chain of custody present?		Yes 🔽	No 🗆				
Chain of custody signed when rellnquished and	received?	Yes 🗹	No 🗆				
Chain of custody agrees with sample labels?		Yes 🗸	No 🗆				
Samples in proper container/bottle?		Yes 🗹	No 🗆				
Sample containers intact?		Yes 🗸	No 🗌				
Sufficient sample volume for indicated test?		Yes 🗸	No 🗆				
All samples received within holding time?		Yes 🗸	No 🗆				
Container/Terrip Blank temperature in complian	ce?	Yes 🗹	No 🗆	1.9 °C			
Water - VOA vials have zero headspace?		Yes 🗌	No 🗀	No VOA viais	submilted	\checkmark	
Water - pH acceptable upon recelpt?		Yes 🗹	No L	Not Applicable			
	Adjusted?	ND_	Checked by	20	=		
Any No response must be detailed in the comm	ents section t	pelow.					
Client contacted	Date contact	ed:		Person contacted			
Conlacted by:	Regarding:			<u> </u>			
Comments:							
	-						
Corrective Action							
	- 1000	_			-		

Page 1 of 1

DHL Analytical Date: 08/03/10

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo

Lab Order: 1007213 **CASE NARRATIVE**

The samples were analyzed using the methods outlined in the following references:

Method SW6020 - Metals Analysis Method E300 - Anions Analysis Method M4500-H+ B (18th Edition) - pH of a Water Method M2540C (18th Edition) - TDS Analysis Method M2510 B (18th Edition) - Specific Conductance

LOG IN

Samples were received and log-in performed on 7/27/10. A total of 3 samples were received. The samples arrived in good condition and were properly packaged. METALS ANALYSIS

For Metals analysis all samples were diluted prior to analysis due to the nature of the samples (high salt content).

For Metals analysis performed on 7/28/10 the matrix spike and matrix spike duplicate recoveries were below control limits for a few analytes. These are flagged accordingly in the QC summary report. The reference sample selected for the matrix spike and matrix spike duplicate was not from this work order. The LCS was within control limits for these analytes. No further corrective actions were taken.

For Metals analysis performed on 7/28/10 the RPD for the serial dilution was slightly above control limits for Iron and Zinc. These are flagged accordingly. The PDS was within control limits for these analytes. No further corrective actions were taken.

ANIONS ANALYSIS

For Anions analysis samples B-18 and B-2 were diluted prior to analysis due to the nature of the samples (high conductivity).

DHL Analytical Date: 08/03/10

CLIENT: Project: Lab Order:	TRC Environmen Rancho Viejo 1007213	tal Corp.	Work Order Sample Summary				
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recv'd			
1007213-01	Ranch Well		07/25/10 12:30 PM	07/27/10			
1007213-02	B-18		07/25/10 02:50 PM	07/27/10			
1007213-03	B-2		07/25/10 04:30 PM	07/27/10			

•	cal
	K
	xna
_	

Date: 08/03710

CLIENT: Project: Lab Order:	TRC Environmental Corp. Rancho Viejo 1007213	iental Corp.		I	PREP DATES REPORT	ΚΤ
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date Batch ID
1007213-01A	Ranch Well	07/25/10 12:30 PM	Aqueous	SW3005A	Aq Prep Metals : ICP-MS	07/27/10 08:58 AM 42163
1007213-01B	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	Ranch Well	07/25/10 12:30 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM 42183
	Ranch Well	07/25/10 12:30 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172
	Ranch Well	07/25/10 12:30 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156
1007213-02A	B-18	07/25/10 02:50 PM	Aqueous	SW3005A	Aq Prep Metals: ICP-MS	07/27/10 08:58 AM 42163
1007213-02B	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-18	07/25/10 02:50 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-18	07/25/10 02:50 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM 42183
	B-18	07/25/10 02:50 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172
	B-18	07/25/10 02:50 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156
1007213-03A	B-2	07/25/10 04:30 PM	Aqueous	SW3005A	Aq Prep Metals: ICP-MS	07/27/10 08:58 AM 42163
1007213-03B	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-2	07/25/10 04:30 PM	Aqueous	E300	Anion Preparation	07/27/10 09:00 AM 42179
	B-2	07/25/10 04:30 PM	Aqueous	M4500-H+B	pH Preparation	07/27/10 12:30 PM 42183
	B-2	07/25/10 04:30 PM	Aqueous	M2510 B	Conductivity Preparation	07/27/10 10:00 AM 42172
	B-2	07/25/10 04:30 PM	Aqueous	M2540C	TDS Preparation	07/27/10 03:15 PM 42156

al	
tic	
laly	1
An	
IL	
Height	

Date: 08/03/10

CLIENT: Project: Lab Order:	TRC Environ Rancho Viejo 1007213	TRC Environmental Corp. Rancho Viejo 1007213	á		ANALY	ICAL I	ANALYTICAL DATES REPORT	ORT
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1007213-01A	Ranch Well	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:38 PM	ICP-MS3_100728A
1007213-01B	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	→	07/27/10 10:21 AM	IC_100727A
	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 11:23 AM	IC_100727A
	Ranch Well	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 01:17 PM	IC_100727A
	Ranch Well	Aqueous	M4500-H+B	hН	42183	-	07/27/10 01:03 PM	TITRATOR_100727A
	Ranch Well	Aqueous	M2510 B	Specific Conductance	42172	-	07/27/10 10:45 AM	WC_100727A
	Ranch Well	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007213-02A	B-18	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01;44 PM	ICP-MS3_100728A
1007213-02B	B-18	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 10:35 AM	IC_100727A
	B-18	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 11:38 AM	IC_100727A
	B-18	Aqueous	E300	Anions by IC method - Water	42179	1000	07/27/10 01:58 PM	IC_100727A
	B-18	Aqueous	M4500-H+B	hd	42183	1	07/27/10 01:05 PM	TITRATOR_100727A
	B-18	Aqueous	M2510 B	Specific Conductance	42172	10	07/27/10 10:45 AM	WC_100727A
	B-18	Aqueous	M2540C	Total Dissolved Solids	42156	_	07/27/10 04:15 PM	WC_100727B
1007213-03A	B-2	Aqueous	SW6020	Trace Metals: ICP-MS - Water	42163	5	07/28/10 01:50 PM	ICP-MS3_100728A
1007213-03B	B-2	Aqueous	E300	Anions by IC method - Water	42179	10	07/27/10 10:50 AM	IC_100727A
	B-2	Aqueous	E300	Anions by IC method - Water	42179	100	07/27/10 11:52 AM	IC_100727A
	B-2	Aqueous	E300	Anions by 1C method - Water	42179	1000	07/27/10 02:12 PM	IC_100727A
	B-2	Aqueous	M4500-H+B	Hd	42183	1	07/27/10 01:06 PM	TITRATOR_100727A
	B-2	Aqueous	M2510 B	Specific Conductance	42172	10	07/27/10 10:45 AM	WC_100727A
	B-2	Aqueous	M2540C	Total Dissolved Solids	42156	1	07/27/10 04:15 PM	WC_100727B

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo Project No: 170401

Lab Order: 1007213

Client Sample ID: Ranch Well

Lab ID:

Collection Date:

1007213-01 07/25/10 12:30 PM

Date: 08/03/10

Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	ND	0.0500	0.150		mg/L	5	07/28/10 01:38 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:38 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:38 PM
Iron	0.828	0.250	0.750		mg/L	5	07/28/10 01:38 PM
Manganese	0.0266	0.0150	0.0500	J	mg/L	5	07/28/10 01:38 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:38 PM
Zinc	ND	0.0100	0.0250		mg/L	5	07/28/10 01:38 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	712	30.0	100		mg/L	100	07/27/10 01:17 PM
Fluoride	1.14	0.100	0.400		mg/L	1	07/27/10 10:21 AM
Nitrate-N	ND	0.100	0.500		mg/L	1	07/27/10 10:21 AM
Sulfate	197	10.0	30.0		mg/L	10	07/27/10 11:23 AM
ρH	M	4500-H+B					Analyst: JBC
pH	8.45	0	0		pH Units	1	07/27/10 01:03 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	3700	10.0	10.0		μmhos/cm	1	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	2100	10.0	10.0		mg/L	1	07/27/10 04:15 PM

	ers

Value exceeds TCLP Maximum Concentration Level В Analyte detected in the associated Method Blank

C Sample Result or QC discussed in the Case Narrative DF **Dilution Factor**

TPH pattern not Gas or Diesel Range Pattern

Analyte detected between MDL and RL MDL Method Detection Limit

Parameter not NELAC certified N ND Not Detected at the Method Detection Limit

RL Reporting Limit S Spike Recovery outside control limits

CLIENT: TRC Environmental Corp.

Project: Rancho Viejo

Project No: 170401 Lab Order: 1007213 Client Sample ID: B-18

Lab ID:

1007213-02 07/25/10 02:50 PM

Date: 08/03/10

Collection Date: Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	S	W6020					Analyst: KL
Aluminum	1.96	0.0500	0.150		mg/L	5	07/28/10 01:44 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:44 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:44 PM
Iron	1.62	0.250	0.750		mg/L	5	07/28/10 01:44 PM
Manganese	0.524	0.0150	0.0500		mg/L	5	07/28/10 01:44 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:44 PM
Zinc	0.0123	0.0100	0.0250	J	mg/L	5	07/28/10 01:44 PM
Anions by IC method - Water	E3	300					Analyst: JBC
Chloride	37800	300	1000		mg/L	1000	07/27/10 01:58 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/27/10 10:35 AM
Nitrate-N	14.3	1.00	5.00		mg/L	10	07/27/10 10:35 AM
Sulfate	2210	100	300		mg/L	100	07/27/10 11:38 AM
pH	M	4500-H+ B					Analyst: JBC
pH	7.08	0	0		pH Units	I	07/27/10 01:05 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	114000	100	100		μmhos/cm	10	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	66600	200	200		mg/L	1	07/27/10 04:15 PM

S Spike Recovery outside control limits

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank

C Sample Result or QC discussed in the Case Narrative DF

Dilution Factor Е TPH pattern not Gas or Diesel Range Pattern

J Analyte detected between MDL and RL

Method Detection Limit

MDL Ν Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RLReporting Limit

CLIENT: TRC Environmental Corp.

Project: Project No: 170401

Rancho Viejo

Lab Order: 1007213

Client Sample ID: B-2

Lab ID:

1007213-03 Collection Date: 07/25/10 04:30 PM

Date: 08/03/10

Matrix:

Aqueous

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
Trace Metals: ICP-MS - Water	SV	V6020					Analyst: KL
Aluminum	0.264	0.0500	0.150		mg/L	5	07/28/10 01:50 PM
Chromium	ND	0.0100	0.0300		mg/L	5	07/28/10 01:50 PM
Copper	ND	0.0100	0.0500		mg/L	5	07/28/10 01:50 PM
Iron	0.318	0.250	0,750	J	mg/L	5	07/28/10 01:50 PM
Manganese	0.563	0.0150	0.0500		mg/L	5	07/28/10 01:50 PM
Silver	ND	0.00500	0.0100		mg/L	5	07/28/10 01:50 PM
Zinc	0.0102	0.0100	0.0250	J	mg/L	5	07/28/10 01:50 PM
Anions by IC method - Water	E3	000					Analyst: JBC
Chloride	36900	300	1000		mg/L	1000	07/27/10 02:12 PM
Fluoride	ND	1.00	4.00		mg/L	10	07/27/10 10:50 AM
Nitrate-N	1.98	1.00	5.00	J	mg/L	10	07/27/10 10:50 AM
Sulfate	1980	100	300		mg/L	100	07/27/10 11:52 AM
рН	M	4500-H+ B					Analyst: JBC
рН	6.93	0	0		pH Units	1	07/27/10 01:06 PM
Specific Conductance	M	2510 B					Analyst: SW
Specific Conductance	114000	100	100		μmhos/cm	10	07/27/10 10:45 AM
Total Dissolved Solids	M	2540C					Analyst: SW
Total Dissolved Solids (Residue, Filterable)	64000	200	200		mg/L	1	07/27/10 04:15 PM

Value exceeds TCLP Maximum Concentration Level

В Analyte detected in the associated Method Blank C Sample Result or QC discussed in the Case Narrative

DF Dilution Factor

Е TPH pattern not Gas or Diesel Range Pattern Analyte detected between MDL and RL

MDL Method Detection Limit Parameter not NELAC certified

ND Not Detected at the Method Detection Limit

RLReporting Limit

S

Spike Recovery outside control limits

Date: 08/03/10

CLIE	NT:
Work	Onda

TRC Environmental Corp. 1007213

Work Order: Project:

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

	<i>J</i>								J. 101		,	2011
Sample ID:	MB-42163	Batch 1D:	42163		TestNo:		SW6020		Units:		mg/	L
SampType:	MBLK	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 I	2:49 PM	Prep I	Date:	07/2	27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit	Qual
Aluminum		ND	0.0300									
Chromium		ND	0.00600									
Copper		ND	0.0100									
lron		ND	0.150									
Manganese		ND	0.0100									
Silver		ND	0.00200									
Zinc		ND	0.00500									
Sample ID:	LCS-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/	L
SampType:	LCS	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 13	2:54 PM	Prep I	Date:		27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD		
Aluminum		5.05	0.0300	5.00	0	101	80	120				
Chromium		0.204	0.00600	0.200	0	102	80	120				
Copper		0.204	0.0100	0.200	0	102	80	120				
lron		5.12	0.150	5.00	0	102	80	120				
Manganese		0.202	0.0100	0.200	0	101	80	120				
Silver		0.197	0.00200	0.200	0	98.7	80	120				
Zinc		0.200	0.00500	0.200	0	99.8	80	120				
Sample ID:	LCSD-42163	Batch ID:	42163		TestNo:		SW6020		Units:		mg/	L
SampType:	LCSD	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 0	1:00 PM	Prep I	Date:	_	27/10
Analyte		Result	RL	SPK value		%REC	LowLimit	HighLimit	%RPD	RPD I	Limit	Qual
Aluminum		4.83	0.0300	5.00	0	96.5	80	120	4.50	15		
Chromium		0.196	0.00600	0.200	0	98.2	80	120	3.80	15		
Copper		0.195	0.0100	0.200	0	97.7	80	120	4.31	15		
Iron		4.85	0.150	5.00	0	97.1	80	120	5.26	15		
Manganese		0.195	0.0100	0.200	0	97.6	80	120	3.42	15		
Silver		0.192	0.00200	0.200	0	95.8	80	120	2.98	15		
Zinc		0.189	0.00500	0.200	0	94.4	80	120	5.56	15		
Sample ID:	1007201-01A SD	Batch ID:	42163		TestNo:		SW6020		Units:		mg/	L
SampType:	SD	Run ID:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 02	2:06 PM	Prep I	Date:	07/2	27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit	Qual
Aluminum		19.5	0.750	0	18.5			-	5.21	10		•
Chromium		0	0.150	0	0.0319				0	10		
Copper		0.0534	0.250	0	0.0498				6.96	10		
lron		16.0	3.75	0	14.0				13.8	10		R
Manganese		3.98	0.250	0	3.67				8.03	10		
Silver		0	0.0500	0	0				0	10		
Zinc		0.0742	0.125	0	0.0650				13.1	10		R
Sample ID:	1007201-01A PDS	Batch ID:	42163		TestNo:		SW6020		Units:		mg/l	L
SampType:	PDS	Run 1D:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 02	2:12 PM	Prep [Date:		27/10
SampType:	PDS	Run 1D:	ICP-MS3_1	100728A	Analysis	Date:	07/28/10 02	2:12 PM	Prep I	Date:	07/2	27/10

Qua	lifier

R	Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit RPD outside accepted control limits

RLReporting Limit

S Spike Recovery outside control limits J Analyte detected between SDL and RL Ν

Parameter not NELAC certified

Date: 08/03/10

CLIENT: Work Orde Project:	TRC Environi 1007213 Rancho Viejo	mental Co	rp.		ANALYTICAL QC SUMMARY REPOR RunID: ICP-MS3_100728						
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limi	it Qual
Aluminum		46.7	0.150	25.0	18.5	113	75	125			
Chromium		0.998	0.0300	1.00	0.0319	96.6	75	125			:*:
Copper		1.01	0.0500	1.00	0.0498	95.8	75	125			
lron		40.3	0.750	25.0	14.0	105	75	125			
Manganese		4.91	0.0500	1.00	3.67	124	75	125			
Silver		0.928	0.0100	1.00	0	92.8	75	125			
Zinc		0.946	0.0250	1.00	0.0650	88.0	75	125			
Sample ID:	1007201-01A MS	Batch ID:	42163		TestNo:		SW6020		Units:	mį	g/L
SampType:	MS	Run ID:	ICP-MS3_	100728A	Analysis 1	Date:	07/28/10 02	2:17 PM	Prep D	Date: 07	/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	t Qual
Aluminum		22.6	0.150	5.00	18.5	82.1	80	120			
Chromium		0.212	0.0300	0.200	0.0319	89.8	80	120			
Copper		0.236	0.0500	0.200	0.0498	92.9	80	120			
Iron		18.5	0.750	5.00	14.0	91.1	80	120			
Manganese		3.80	0.0500	0.200	3.67	65.8	80	120			S
Silver		0.182	0.0100	0.200	0	91.1	80	120			
Zinc		0.230	0.0250	0.200	0.0650	82.3	80	120			
Sample ID:	1007201-01A MSD	Batch ID:	42163		TestNo:		SW6020		Units:	mg	g/L
SampType:	MSD	Run ID:	ICP-MS3_	100728A	Analysis I	Date:	07/28/10 02	2:23 PM	Prep D		/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	Qual
Aluminum		22.3	0.150	5.00	18.5	75.8	80	120	1.40	15	S
Chromium		0.209	0.0300	0.200	0.0319	88.4	80	120	1.40	15	
Copper		0.226	0.0500	0.200	0.0498	88.2	80	120	4.09	15	
lron		17.8	0.750	5.00	14.0	77.3	80	120	3.79	15	S
Manganese		3.71	0.0500	0.200	3.67	23.2	80	120	2.26	15	S
Silver		0.179	0.0100	0.200	0	89.6	80	120	1.60	15	
Zinc		0.226	0.0250	0.200	0.0650	80.3	80	120	1.73	15	

Qualifiers:

Analyte detected in the associated Method Blank

B Analyte detected DF Dilution Factor

J Analyte detected between MDL and RL

MDL Method Detection Limit

ND Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit
S Spike Recovery outside control limits
J Analyte detected between SDL and RL

N Parameter not NELAC certified

CLIENT: TRC Environmental Corp.

Rancho Viejo

Work Order: Project:

1007213

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_100728A

Date: 08/03/10

Sample ID:	ICV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg	ŗ/L
SampType:	ICV	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 1	1:02 AM	Prep D	Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	Qual
Aluminum		2.48	0.0300	2.50	0	99.2	90	110			
Chromium		0.0989	0.00600	0.100	0	98.9	90	110			
Copper		0.100	0.0100	0.100	0	100	90	110			
Iron		2.56	0.150	2.50	0	103	90	110			
Manganese		0.0988	0.0100	0.100	0	98.8	90	110			
Silver		0.0985	0.00200	0.100	0	98.5	90	110			
Zinc		0.101	0.00500	0.100	0	101	90	110			
Sample ID:	CCV1-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg	:/L
SampType:	CCV	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 12	2:21 PM	Prep D	Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	Qual
Aluminum		5.22	0.0300	5.00	0	104	90	110			
Chromium		0.205	0.00600	0.200	0	103	90	110			
Copper		0.205	0.0100	0.200	0	102	90	110			
lron		5.12	0.150	5.00	0	102	90	110			
Manganese		0.205	0.0100	0.200	0	103	90	110			
Silver		0.207	0.00200	0.200	0	104	90	110			
Zinc		0.204	0.00500	0.200	0	102	90	110			
Sample ID:	CCV2-100728	Batch ID:	R50539		TestNo:		SW6020		Units:	mg	:/L
SampType:	CCV	Run ID:	ICP-MS3_	100728A	Analysis	Date:	07/28/10 02	2:28 PM	Prep D)ate:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit	Qual
Aluminum		5.38	0.0300	5.00	0	108	90	110			
Chromium		0.202	0.00600	0.200	0	101	90	110			
Copper		0.208	0.0100	0.200	0	104	90	110			
Iron		5.16	0.150	5.00	0	103	90	110			
Manganese		0.199	0.0100	0.200	0	99.4	90	110			
Silver		0.205	0.00200	0.200	0	103	90	110			
Zinc		0.200	0.00500	0.200	0	100	90	110			

Qualifiers:

В Analyte detected in the associated Method Blank

DF **Dilution Factor**

J Analyte detected between MDL and RL

MDL ND

Method Detection Limit Not Detected at the Method Detection Limit R RPD outside accepted control limits RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J

N Parameter not NELAC certified DHL Analytical Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp.

1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

fiers: B	Analyte detected in the	associated M	1ethod Blank			R RL	RPD outs	ide accepted	control li	mits	
Sample ID:	1007213-01B MS	Batch ID:	42179		TestNo:		E300		Units:		mg/L
Sulfate		422	30.0	300.0	118.5	101	90	110	0.952	20	
Analyte		Result	RL	SPK value		%REC		HighLimit	%RPD		Limit Qual
SampType:	MSD	Run ID:	IC_100727	A	Analysis	Date:	07/27/10 01	1:03 PM	Prep D	ate:	07/27/10
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
Sulfate		426	30.0	300.0	118.5	103	90	110			
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
SampType:	MS	Run ID:	IC_100727	A	Analysis	Date:	07/27/10 12	2:48 PM	Ргер Г	Date:	07/27/10
Sample ID:	1007213-01B MS	Batch ID:	42179		TestNo:		E300		Units:		mg/L
Nitrate-N		4.92	0.500	5.000	0	98.3	90	110	1.70	20	
Fluoride		4.47	0.400	4.000	0.6800	94.6	90	110	0.834	20	
Analyte		Result	RL	SPK value		%REC		HighLimit	%RPD		Limit Qual
SampType:	MSD	Run ID:	IC_100727		Analysis		07/27/10 12		Prep D		07/27/10
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
1411410-14		1.03	0.500	2.000	v	70.1	70	110			
Nitrate-N		4.83	0.400	5.000	0.0800	96.7	90	110			
Fluoride		4.43	0.400	4.000	0.6800	93.7	90	110	/UIXI D	MD.	Linni Qual
Analyte	1410	Result	RL	SPK value		%REC		HighLimit	_		Limit Qual
Sample ID: SampType:	1007213-01B MS MS	Batch ID: Run ID:	42179 IC_100727.	Δ	TestNo: Analysis	Data	E300 07/27/10 12	2.20 DM	Units: Prep D	late.	mg/L 07/27/10
Commis ID:	1007212 01B 849	DataL ID	42170		TootNie		E200		T !:		mc/I
Sulfate		ND	3.00								
Nitrate-N		ND	0.500								
Fluoride		ND	0.400								
Chloride		ND	1.00								
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
SampType:	MBLK	Run ID:	IC_100727.	A	Analysis	Date:	07/27/10 10	0:06 AM	Prep D	Date:	07/27/10
Sample ID:	MB-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L
Surrate		30.3	3.00	30.00	U	101	90	110	2.11	20	
Nitrate-N Sulfate		30.3	3.00	30.00	0	103	90	110	2.77	20	
Fluoride		3.98 5.25	0.400 0.500	4.000 5.000	0 0	99.6 105	90 90	110 110	0.918 1.37	20 20	
Chloride		10.0	1.00	10.00	0	100	90	110	1.49	20	
Analyte		Result	RL	SPK value		%REC	LowLimit	HighLimit	%RPD		Limit Qual
SampType:	LCSD	Run ID:	IC_100727		Analysis		07/27/10 09		Prep I		07/27/10
Sample ID:	LCSD-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L
Sulfate		29.5	3.00	30.00	0	98.4	90	110			
Nitrate-N		5.18	0.500	5.000	0	104	90	110			
Fluoride		3.95	0.400	4.000	0	98.7	90	110			
Chloride		9.85	1.00	10.00	0	98.5	90	110			
Analyte		Result	RL	SPK value		%REC	LowLimit	HighLimit	%KPD	KPD	Limit Qual
SampType:	LCS	Run ID:	IC_100727		Analysis		07/27/10 09		Prep I		07/27/10
•											
Sample ID:	LCS-42179	Batch ID:	42179		TestNo:		E300		Units:		mg/L

Qualifi

DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit ND Not Detected at the Method Detection Limit RLReporting Limit

Spike Recovery outside control limits S Analyte detected between SDL and RL J

Parameter not NELAC certified

DHL Analytical Date: 08/03/10

CLIENT: Work Order: TRC Environmental Corp. 1007213

Work Order: Project: Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

SampType:	MS	Run ID:	IC_100727A		Analysis Date:		07/27/10 01:31 PM		Prep Date:		07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD	Limit Qual
Chloride		1430	100	1000	427.0	100	90	110			
Sample ID:	1007213-01B MSD	Batch ID:	42179		TestNo:		E300		Units:		mg/L
SampType:	MSD	Run ID:	IC_100727	A	Analysis l	Date:	07/27/10 0	1:44 PM	Prep D	Date:	07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual
Chloride		1430	100	1000	427.0	100	90	110	0	20	

-				
Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

TRC Environmental Corp. 1007213 CLIENT:

Work Order: Project: Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: IC_100727A

Date: 08/03/10

Sample ID:	ICV-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L	
SampType:	ICV	Run ID:	IC_100727	A	Analysis	Date:	07/27/10 09	9:20 AM	Prep D	oate: 07/27/10	0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua	al
Chloride		25.8	1.00	25.00	0	103	90	110			
Fluoride		10.2	0.400	10.00	0	102	90	110			
Nitrate-N		13.3	0.500	12.50	0	106	90	110			
Sulfate		76.7	3.00	75.00	0	102	90	110			
Sample ID:	CCV1-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L	
SampType:	CCV	Run ID:	IC_100727	A	Analysis	Date:	07/27/10 12	2:06 PM	Prep D	ate: 07/27/10	Э
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua	al
Chloride		10.2	1.00	10.00	0	102	90	110			
Fluoride		3.96	0.400	4.000	0	99.0	90	110			
Nitrate-N		5.25	0.500	5.000	0	105	90	110			
Sulfate		30.2	3.00	30.00	0	101	90	110			
Sample ID:	CCV2-100727	Batch ID:	R50502		TestNo:		E300		Units:	mg/L	
SampType:	CCV	Run ID:	IC_100727	A	Analysis l	Date:	07/27/10 02	2:40 PM	Prep D	oate: 07/27/10)
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qua	al
Chloride		10.1	1.00	10.00	0	101	90	110			
Fluoride		3.92	0.400	4.000	0	98.0	90	110			
Nitrate-N		5.26	0.500	5.000	0	105	90	110			
Sulfate		30.4	3.00	30.00	0	101	90	110			

Qualifiers:

Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit

Not Detected at the Method Detection Limit ND

RPD outside accepted control limits

RL Reporting Limit

S Spike Recovery outside control limits Analyte detected between SDL and RL J

N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100727A

Date: 08/03/10

												_
Sample ID:	1007213-01B DUP	Batch ID:	42183		TestNo:		M4500-H+	В	Units:		pH Units	
SampType:	DUP	Run ID:	TITRATOR	2_100727A	Analysis	Date:	07/27/10 0	1:04 PM	Prep D	ate:	07/27/10	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD I	Limit Qual	
nН		8 43	0	0	8 450				0.237	5		

Qualifiers:	В	Analyte detected in the associated Method Blank	R	RPD outside accepted control limits
	DF	Dilution Factor	RL	Reporting Limit
	J	Analyte detected between MDL and RL	S	Spike Recovery outside control limits
	MDL	Method Detection Limit	J	Analyte detected between SDL and RL
	ND	Not Detected at the Method Detection Limit	N	Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: TITRATOR_100727A

Date: 08/03/10

Sample ID:	ICV-100727	Batch ID:	R50506				M4500-H+ B		Units:	pH Units
SampType:	ICV	Run ID:	TITRATOR	_100727A	Analysis Date:		07/27/10 01:02 PM		Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		9.99	0	10.00	0	99.9	99	101		
Sample ID:	CCV-100727	Batch ID:	R50506		TestNo:		M4500-H+	В	Units:	pH Units
SampType:	CCV	Run ID:	TITRATOR	_100727A	Analysis	Date:	07/27/10 0	1:07 PM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
pН		7.01	0	7.000	0	100	97.1	102.9		

В

DHL Analytical Date: 08/03/10

CLIENT: Work Order:

Project:

TRC Environmental Corp. 1007213

Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727A

Sample ID:	MB-42172	Batch ID:	42172	42172		TestNo:			Units:	μmhos/cm
SampType:	MBLK	Run ID:	WC_100727A Analysis Date: 07		07/27/10 10:45 AM		Prep D	ate: 07/27/10		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	ductance	ND	10.0							
Sample ID:	LCS-42172	Batch ID:	42172		TestNo:		M2510 B		Units:	umhos/cm
SampType:	LCS	Run ID:	WC_1007	27 A	Analysis	Date:	07/27/10 10:45 AM		Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	ductance	1460	10.0	1413	0	104	95	105		
Sample ID:	1007213-01B-DUP	Batch ID:	42172		TestNo:		M2510 B		Units:	μmhos/cm
SampType:	DUP	Run ID:	WC_1007	27 A	Analysis Date:		07/27/10 10):45 AM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	ue Ref Val %REC		LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cond	ductance	3730	10.0	0	3700				0.808	2

В Qualifiers: Analyte detected in the associated Method Blank

DF Dilution Factor

J Analyte detected between MDL and RL

MDL Method Detection Limit

Not Detected at the Method Detection Limit

R RPD outside accepted control limits

RL Reporting Limit

Spike Recovery outside control limits S

Analyte detected between SDL and RL J N Parameter not NELAC certified

CLIENT: Work Order: TRC Environmental Corp. 1007213 Rancho Viejo

Project:

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727A

Date: 08/03/10

Sample ID:	ICV-100727	Batch ID:	CONDW-	CONDW-7/27/10		TestNo:		M2510 B		μmhos/cm
SampType:	ICV	Run ID:	WC_1007			Analysis Date:		0:45 AM	Prep D	ate: 07/27/10
Analyte		Result	RL	-		Ref Val %REC		HighLimit	%RPD	RPD Limit Qual
Specific Cone	ductance	12900	10.0	12880	0	99.9	95	105		
Sample ID:	CCV-100727	Batch ID:	CONDW-	7/27/10	TestNo:		M2510 B		Units:	μmhos/cm
SampType:	CCV	Run ID:	WC_1007	27 A	Analysis	Date:	07/27/10 1	0:45 AM	Prep D	ate: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Specific Cone	ductance	etance 12800 10.0 12880		0	99.0	95	105			

Qualifiers:

Analyte detected in the associated Method Blank

В DF Dilution Factor

Analyte detected between MDL and RL

MDL Method Detection Limit ND Not Detected at the Method Detection Limit R RL RPD outside accepted control limits

Reporting Limit S

Spike Recovery outside control limits J Analyte detected between SDL and RL N Parameter not NELAC certified

CLIENT: Work Order:

Project:

TRC Environmental Corp.

1007213 Rancho Viejo

ANALYTICAL QC SUMMARY REPORT

RunID: WC_100727B

Date: 08/03/10

-										
Sample ID:	MB-42156	Batch ID:			M2540C		Units:	mg/L		
SampType:	MBLK	Run ID:	WC_10072	7B	Analysis I	Date:	07/27/10 04	4:15 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	ND	10.0							
Sample ID:	LCS-42156	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	LCS	Run ID:	WC_10072	7B	Analysis Date:		07/27/10 04:15 PM		Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val %REC		LowLimit HighLimit		%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	728	10.0	745.6	0	97.6	90	113		
Sample ID:	1007188-01C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_10072	7B	Analysis l	Date:	07/27/10 0	4:15 PM	Prep D	Date: 07/27/10
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual
Total Dissolve	ed Solids (Residue, Fi	1130	10.0	0	1111				1.61	5
Sample ID:	1007192-03C-DUP	Batch ID:	42156		TestNo:		M2540C		Units:	mg/L
SampType:	DUP	Run ID:	WC_10072	7B	Analysis l	Date:	07/27/10 0	4:15 PM	Ргер Г	Date: 07/27/10
Analyte	yte Result RL SPK value Ref Val		%REC	LowLimit	HighLimit	%RPD	RPD Limit Qual			
Total Dissolve	ed Solids (Residue, Fi	633	10.0	0	623.0				1.59	5

Qualifiers: В Analyte detected in the associated Method Blank

DF Dilution Factor

Analyte detected between MDL and RL

 MDL Method Detection Limit

ND Not Detected at the Method Detection Limit R RPD outside accepted control limits

RLReporting Limit

S J Spike Recovery outside control limits

Analyte detected between SDL and RL

N Parameter not NELAC certified

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-1

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:04

Lab Sample ID #: 1103321-01

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry	-13-00pe=10-			•		-		,	
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	-
Chloride *	31800	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	14,0	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1500	mg/L	25,0		B114131	04/01/11	300.0	AK	
Specific conductance *	82400	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.37	pH Units	0.05		B114036	03/25/11	SM4500HB		Н
Temperature	12	°F	1.0		B114036	03/25/11	170.1	AK	Н

www.safestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-2

Sample Matrix: Liquid

Sampling Method: Grab
Date/Time Collected: 03/24/11 09:55

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				•		•			110103
Fluoride *	< 0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	29400	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	10,3	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1900	mg/L	50.0		B114131	04/01/11	300.0	AK	
Specific conductance *	80600	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.08	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	н
Temperature	11	°F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-6

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:20

Lab Sample ID #: 1103321-03

=									
Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst No	otes
DRAFT: General Chemistry									
Fluoride *	<0.100	mg/L	0,100		B114004	03/26/11	300.0	AK	
Chloride *	17600	mg/L	1000		B114131	04/01/11	300.0	AK	
■ Nitrate as N *	3.35	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	2520	ing/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	55100	umhos/cm	1,00		B114037	03/25/11	SM2510B	AK	
pH *	7.02	pH Units	0.05		B114036	03/25/11	SM4500HB		н
Temperature	11	°[7	1.0		B114036	03/25/11	170.1	AK	н

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Autonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-10

Sampling Method: Grab
Sample Matrix: Liquid
Date/Time Collected: 03/24/11 10:10

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				•		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	/ willing St	110163
Fluoride *	< 0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	30800	mg/I,	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	11.1	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1250	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	76500	umhos/cm	1_00		B114037	03/25/11	SM2510B	AK	
pH *	7 21	pH Units	0.05		B114036	03/25/11	SM4500HE		н
Temperature	11	٥F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-11

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 10:25

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst ?	Notes
DRAFT: General Chemistry	0.0-5.444							Ť	
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	12000	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	16.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1860	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	54800	umhos/cm	1.00		B114037	03/25/11	SM2510B	ΛK	
pH *	7.00	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	Н
Temperature	11	°F	0.1		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-13

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:47

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				•		·		, J. C.	riotes
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	30800	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	13.4	mg/L	0.50		B114004	03/26/11	300,0	AK	
Sulfate *	1650	nig/L	1000		B114131	04/01/11	300.0	AK	
Specific conductance *	81400	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	6.98	pH Units	0.05		B114036	03/25/11	SM4500HB		H
Temperature	10	°F	0.1		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-18

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:25

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry	411/1								
Fluoride *	<0.100	mg/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	31000	mg/L	2000		B114131	04/01/11	300.0	AK	
Nitrate as N *	11.4	mg/L	0,50		B114004	03/26/11	300.0	AK	
Sulfate *	1660	ing/L	1000		B114131	04/01/11	300,0	AK	
Specific conductance *	84000	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.16	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	Н
Temperature	9.6	۰F	1.0		B114036	03/25/11	170.1	AK	H

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar

Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-24

Sampling Method: Grab Sample Matrix: Liquid

Lab Sample 1D #: 1103321-08 Date/Time Collected: 03/24/11 09:17

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry				P 1.23.23.3		,	MEMON	Auniyai	110163
Fluoride *	<0.100	ing/L	0.100	****	B114004	03/26/11	300.0	AK	
Chloride *	14600	mg/L	1000		B114131	04/01/11	300,0	AK	
Nitrate as N *	15.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1100	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	54600	unthos/cm	1.00		B114037	03/25/11	SM2510B		
pH *	6.91	pH Units	0.05		B114036	03/25/11	SM4500HB		н
Temperature	9.9	٥F	1.0		B114036	03/25/11	170 1	AK	н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-26

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 09:06

Lab Sample ID #: 1103321-09

Analyte	Result	Units	PQL	Prep Mcthod	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry			372076					•	
Fluoride *	<0,100	ing/L	0.100		B114004	03/26/11	300.0	AK	
Chloride *	29300	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	10.8	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1320	mg/L	500		B114131	04/01/11	300,0	AK	
Specific conductance *	84100	umhos/cm	1.00		B114037	03/25/11	SM2510B	ΛK	
pH *	7.14	pH Units	0.05		B114036	03/25/11	SM4500HB	AK.	H
Temperature	9.2	°F	1.0		B114036	03/25/11	170.1	AK	н

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: B-27

Sample Matrix: Liquid

Sampling Method: Grab

Date/Time Collected: 03/24/11 08:55

					- 00.00				
Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry								TRICKING SE	110163
Fluoride *	<0.100	mg/L	0.100	·	B114004	03/26/11	300.0	AK	
Chloride *	27700	mg/L	1000		B114131	04/01/11	300.0	AK	
Nitrate as N *	7.63	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	1330	mg/L	500		B114131	04/01/11	300.0	AK	
Specific conductance *	70700	umhos/cm	1.00		B114037	03/25/11	SM2510B		
pH *	7.08	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	Н
Temperature	8.8	°F	1_0		B114036	03/25/11	170.1	ΑK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar

Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: T-1 (Burrito Tank)

Sampling Method: Grab Date/Time Collected: 03/24/11 09:32

Lab Sample ID #: 1103321-11

Sample Matrix: Liquid

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry		V = DVCTXCC						•	
Fluoride *	<0.100	mg/L	0.100	***	B114004	03/26/11	300.0	AK	
Chloride *	271	mg/L	10.0		B114131	04/01/11	300.0	AK	
Nitrate as N *	< 0.50	nig/L	0.50		B114004	03/26/11	300,0	AK	
Sulfate *	11.0	mg/L	0.50		B114004	03/26/11	300.0	AK	
Specific conductance *	1520	umhos/cm	1.00		B114037	03/25/11	SM2510B	AK	
pH *	7.28	pH Units	0.05		B114036	03/25/11	SM4500HB	AK	н
Temperature	9.8	°F	1.0		B114036	03/25/11	170.1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Sample ID #: DRAFT: T-2

Sample Matrix: Liquid

Sampling Method: Grab Date/Time Collected: 03/24/11 09:39

Analyte	Result	Units	PQL	Prep Method	Batch	Analyzed	Method	Analyst	Notes
DRAFT: General Chemistry								•	
Fluoride *	0.387	mg/L	0.100		B114004	03/26/11	300 0	AK	
Chloride *	82.2	nig/L	10.0		B[14]31	04/01/11	300.0	AK	
Nitrate as N *	<0.50	mg/L	0.50		B114004	03/26/11	300.0	AK	
Sulfate *	13.7	mg/L	0.50		B114004	03/26/11	300.0	AK	
Specific conductance *	1040	umhos/cin	1.00		B114037	03/25/11	SM2510B		
pH *	8.02	pH Units	0.05		B114036	03/25/11	SM4500HB	з АК	Н
Temperature	11	°F	1.0		B114036	03/25/11	170,1	AK	Н

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249 Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RľD	RPD Limit	
Batch B114004 - NO PREP										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
DRAFT: Blank (B114004-BLK1)				Prepared: 0	3/25/11 09	53 Analyz	ed: 03/26/J	1 02:25		
luoride	<0.100	0.100	mg/L				77.	75		-:
Nitrate as N	< 0.50	0_50	ing/L							
Sulfate	< 0.50	0.50	nig/L							
DRAFT: Blank (B114004-BLK2)				Prepared: 0	3/25/11 09:	53 Analyz	ed: 03/26/1	1 02:25		
luoride	<0.100	0.100	mg/L						7.	
litrate as N	< 0.50	0,50	mg/L							
ulfate	<0_50	0.50	nıg/L							
DR Blank (B114004-BLK3)	10.00			Prepared: 0	3/25/11 09:	53 Analyz	ed: 03/26/1	1 02:25		
luoride	<0.100	0.100	nig/L					elle-	777	
itrate as N	<0,50	0.50	mg/L							
ulfate	<0.50	0,50	mg/L							
RAFT: LCS (B114004-BS1)				Prepared: 0	3/25/11 09:	53 Analyz	ed: 03/26/1	1 02:25		
moride	0.921	0.100	mg/L	1.00		92	90-110			
itrate as N	4,81	0.50	mg/L	5,00		96	90-110			
ulfate	5.22	0.50	mg/L	5.00		104	90-110			
RAFT: LCS (B114004-BS2)				Prepared: 03	3/25/11 09::	53 Analyzi	ed: 03/26/11	02:25		
uoride	0.992	0.100	nıg/L	1.00		99	90-110			
itrate as N	4,95	0,50	mg/L	5.00		99	90-110			
lifate	5.38	0.50	mg/L	5.00		108	90-110			
RAFT: LCS (B114004-BS3)				Prepared: 03	3/25/11 09:	53 Analyzo	ed: 03/26/11	02:25		
uoride	0.957	0,100	ung/L	1.00	7110	96	90-110			
Irate as N	4.68	0.50	mg/L	5.00		94	90-110			CCVI
dfate	5.16	0.50	mg/L	5.00		103	90-110			3012
RAFT: LCS Dup (B114004-BSD1)				Prepared; 03	3/25/11 09:5	3 Analyze	d: 03/26/11	02:25		
noride	0.915	0.100	mg/L	1.00	-	92	90-110	0.7	20	-
trate as N	4.78	0,50	mg/L	5.00		96	90-110	0.6	20	
lfate	5.21	0.50	mg/L	5.00		104	90-110	0.2	20	
RAFT: LCS Dup (B114004-BSD2)				Prepared: 03	/25/11 09:5	3 Analyze	d: 03/26/11	02:25		
uoride	0.986	0.100	mg/L	1.00	-	99	90-110	0.6	20	
trate as N	5,02	0,50	nig/L	5.00		100	90-110	1	20	
Ilfate	5.36	0.50	mg/L	5.00		107	90-110	0.4	20	
RA (.CS Dup (B114004-BSD3)				Prepared: 03	/25/11 00:5	2 Analyza	L na /acu c	02.26		

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC	RPD	RPD Limit	
3atch B114004 - NO PREP										
DRAFT: LCS Dup (B114004-BSD3)				Prepared:	03/25/11 09:	53 Analyz	red: 03/26/1	1 02:25		
luoride	0.933	0.100	mg/L	1.00	****	93	90-110	3	20	
litrate as N	4.62	0,50	mg/L	5_00		92	90-110	1	20	
hilfate	4.96	0.50	mg/L	5_00		99	90-110	4	20	
DRAFT: Duplicate (B114004-DUP2)		Source: 1103321	-04	Prepared:	03/25/11 09::	53 Analyz	ed: 03/26/1	1 02:25		
luoride	<0.100	0_100	mg/L		<0.100				20	
litrate as N	12.0	0,50	mg/L		11,1			8	20	
DRAFT: Duplicate (B114004-DUP3)	T-alli-r	Source: 1103321	-10	Prepared: (03/25/11 09:	53 Analyz	ed: 03/26/I	1 02:25		
luoride	<0.100	0,100	nig/L		<0.100				20	
litrate as N	7.85	0,50	mg/L		7,63			3	20	
Batch B114036 - NO PREP		*****			-	roture -				
PRAFT: LCS (B114036-BS1)	111111111111111111111111111111111111111			Prepared: (03/25/11 14:2	20 Analyz	ed: 03/25/11	1 14:20	****	
Н	4.06	0.05	pH Units	4.00		102	80-120			
PRAFT: LCS (B114036-BS2)				Prepared: (03/25/11 14:2	0 Analyz	ed: 03/25/11	1 14:20		
И	4.09	0.05	pH Units	4,00		102	80-120			
RAFT: Duplicate (B114036-DUP1)		Source: 1103321-	10.	Prepared: 0	03/25/11 14:2	0 Analyza	ed: 03/25/11	14:20		
Н	7,43	0.05	pH Units		7,37			0,8	20	100
emperature	12.0	1.0	۰F		[2:]			0.8	30	
RAFT: Duplicate (B114036-DUP2)		Source: 1103321-	11	Prepared: 0	3/25/11 14:2	0 Analyze	ed: 03/25/11	14:20		
H	7.30	0.05	pH Units		7.28			0.3	20	
emperature	9.70	1.0	°F		9.80			1	30	
atch B114037 - NO PREP										
RAFT: LCS (B114037-BS1)				Prepared: 0	3/25/11 14:2	0 Analyze	d: 03/25/11	14:20		
pecific conductance	993	1.00	umlios/cm	1000	-	99	80-120			-
RAFT: LCS (B114037-BS2)				Prepared: 0	3/25/11 14:20	0 Analyze	d: 03/25/11	14:20		
secific conductance	997	1.00	umhos/cm	1000		100	80-120		-	
RAFT: Duplicate (B114037-DUP1)	Total	Source: 1103321-	01	Prepared: 03	3/25/11 14:20	O Analyze	d: 03/25/11	14:20		
ecific conductance	82800	1.00	umhos/cm	17.57	32400			0.5	20	
RAFT: Duplicate (B114037-DUP2)		Source: 1103321-	11	Prepared: 03	3/25/11 14:20) Analyze	d: 03/25/11			
ecific conductance	1520	1.00	umhos/cm		1520			0,3	20	

www.satestinglab.com

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Vicjo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

DRAFT: General Chemistry - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch B114131 - NO PREP	Y SAME								
DRAFT; Blank (B114131-BLK1)				Prepared: (03/31/11 15:	14 Analya	ed: 04/01/1	1 01:40	Allen 399
Chloride	<1.00	1,00	mg/L		- 7		1000		
Sulfate	<0.50	0,50	mg/L						
DRAFT: Blank (B114131-BLK2)				Prepared: 0	03/31/11 15:	l 4 Analyz	ted: 04/01/1	1 01:40	
Chloride	<0.00	1.00	mg/L				-		
Sulfate	< 0.50	0.50	mg/L						
DRAFT: LCS (B114131-BS1)				Prepared: 0	3/31/11 15:	14 Analyz	ted: 04/01/1	1 01:40	
Chlorida	5,19	1,00	mg/L	5.00		104	90-110		1
Sulf	5,36	0.50	mg/L	5.00		107	90-110		
DRAFT: LCS (B114131-BS2)				Prepared: 0	3/31/11 15:	l4 Analyz	ed: 04/01/1	1 01:40	
Chloride	4,97	1.00	mg/L	5.00		99	90-110		**
Sulfate	5,12	0,50	nig/L	5.00		102	90-110		
DRAFT: LCS Dup (B114131-BSD1)		TO STATE OF THE ST		Prepared: 0	3/31/11 15:1	4 Analyz	ed: 04/01/1	1 01:40	
Chloride	5.21	1.00	nig/L	5,00		104	90-110	0,4	20
Sulfate	5.30	0,50	mg/L	5.00		106	90-110	1	20
DRAFT: LCS Dup (B114131-BSD2)				Prepared; 0	3/31/11 1 <i>5</i> :1	4 Analyz	ed: 04/01/11	01:40	
Chloride	5.02	1.00	nig/L	5,00		100	90-110	1	20
Sulfate	5.13	0.50	mg/L	5.00		103	90-110	0.2	20
DRAFT: Duplicate (B114131-DUP1)		Source: 1103321-0	08	Prepared: 0:	3/31/11 15:1	4 Analyze	ed: 04/01/11	01:40	
Chloride	13900	1000	mg/L		14600		11	5	20
Sulfate	1030	500	mg/L	1	0011			7	20
DRAFT: Duplicate (B114131-DUP2)		Source: 1103321-1	12	Prepared: 03	3/31/11 [5:1	4 Analyzo	ed: 04/01/11	01:40	
Chloride	91.3	10.0	nig/L	8	32.2			10	20
Sulfate	13.6	5 00	mg/L	1	12.7			7	20

www.satestinglab.com

Definitions and Notes

All quality control samples and checks are within acceptance limits unless otherwise indicated.

Test results pertain only to those items tested.

All samples were in good condition when received by the laboratory unless otherwise noted

Raba-Kistner Consultants, Inc. 12821 W. Golden Lane San Antonoio TX, 78249

Project: Rancho Viejo, Webb Co., TX

Project Number: ASF09-192-01 Project Manager: Rick Klar

Reported: 04/01/11 15:50 Received: 03/25/11 10:50

Report No. 1103321

Н

pH and temperature are field tests and should be analyzed within 15 minutes. Due to transportation, hold time has been exceeded

CCVL PQL

CCV recovery is outside QC limits, the results may have a slight low bias.

mg/Kg

Practical Quantitation Limit

Milligrams per Kilogram (Parts per Million) Milligrams per Liter (Parts per Million)

mg/L

Parts per Million

PPM

NELAC accredited analyte

RMCCL

Recommended Maximum Concentration of Contaminants Level

Test Methods

Standard Methods for the Examination of Water and Wastewater, 20th Edition 1998

Methods for Chemical Analysis of Water and Wastes, EPA 600/4-79-020, Rev. March 1983

EPA SW Test Methods for the Examination of Solid Waste, SW-846, 1996

DRAFT REPORT, DATA SUBJECT TO CHANGE For

The results in this report apply to the samplex analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Richard Hawk, General Manager

15kg		REPORT TO:	IOANI	INVOICE TO: R.O.#	
H	OINDINE NE	COMPANY Raba-Kistnet	COMPANY TRC Environmental	mental Gords.	REPO! IMBER
resting	FESTING LABORATORY, INC.	12821 X	m	Dr. Suite 250	165.501
1610 S. Laredo Street, (210) 229-9920	Laredo Street, San Antonio, Texas 78207 (210) 229-9920 • Fax (210) 229-9923	LONIO STATETIK	249 OTTY Austin		6
WWW	www.satestinglab.com	K Klar (210)	0		FMAIL FKIST O FKE: SM
PROJECT NAME/LOCATION/SITE	VSITE	AROUND TIME 3 7-10 Bus	X 3-5 Business Days	☐ Next Business Day	SAME DAY WHEN POSSIBLE
Rancha Yieja,	io, Mabb Co., TX	THRP 13 REQUEST 3 YES NO COMMENTS/SPECIAL REQUESTS: *	Standard	A-K 5-44 TAT	
PROJECT NO. ASFO9 -	192-01	AE WITHIN COMPLIANCE (> 0°C ≤ 6°C)	ES D NO IF NO, SIGN HERE TO AUTHORIZE ANALYSIS	HORIZE ANALYSIS	
SAMPLED BY	MATRIX SAEPLING METHOD			ANALYSIS REQUESTED	
COLLECTED				1 / 1 / 1/3/3	SON PRESERVED WITH
7 - 11 - 100	0 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		00 4 3 187 (8280)	00E) 00E) 00E) 00E) 00E) 00E) 00E) 00E)	SAME AND
E R)	IDENTIFICATION	TI LILE STREET	01-00-1000 11W 11W 12W 12W 12W 12W 12W 12W 12W 12W	
		21/21	W W W W W W W W W W	11/2/11	KENTAKKS
1 3-24 10.04	×			XXXXX	
13 X	×	B-2		XXXX	
3 10.20	><	8-6		XXXXX	
61.61	×	B-10		XXXXX	
52.61	× ,	B-11			
54:4	×	B-13		XXXXX	
,	× 10	B-16			
***	×;	B-24		XXXXXX	
-	X	4			===
10 1 8 13	X	B-27	A	XXXXX	
		SURENCE NETER			
[3-24 9.32		113	-		
_		CONFINE ISPLY			وا
			A		
-					
RELINGUISHED BY CHARTONES	DATE 7.275-7.	Mety Mone Received by (SIGNIFFURE)		DATE / TIME	RECEIVED BY (SIGNATURE
RELINQUISHED BY (PRINT N.		RECEIVED BY (RAINT NAME)	RELINQUISHED BY (PRINT NAME)	RECEIVED BY (PHINT NAME)	
RELINQUISHED BY (SIGNATURE)		RECEIVED BY (SIGNATURE)	METHOD OF SHIPMENT HONG	TO BE SENT OUT A YES	- F

Rev. 11/07 S No

J YES

CUSTODY SEAL IN PLACE & INTACT

Hama

CANARY - CLIENT

WHITE - LAB

RECEIVED BY (PRINT NAME)

RELINGUISHED BY (PRINT NAME) RELINQUISHED BY (SIGNATURE)

FORM: COC REV 05/07

Client: Paka Sample Receipt C	пески	<u>st</u>		Report N	umban In	12271
Project Name: Rancho VIE'D. Web	1	4	T /	Date Re		00004
Shipped via:	O C	Dever	Y			31,25/11
Training Delivered [_1011 C	LISAIL			te Due:	
Itams to be absolved upon	Danai	4. FW.			Specify: \Box	√ 2 ∐1
Items to be checked upon	Recei	pt: [re	S, IN	0, N/A]		
Custody Seals present?	Yes	1	10	NA.	If NA-re	eason:
2. Custody Seals intact?	Yes	1	J o	NA	If NA-re	enson:
3. Air Bill included in folder, if received?	Yes	1	Vo	NA	If NA-re	eason:
4. Is COC included with samples?	Yes	I	Vo	NA	If NA18	eason;
5. Is COC signed and dated by client?	Yes	C-1	Vo	NA	IfNA-re	
 Sample temperature: Thermal preservation between >0°-6° C? (Samples that are delivered to the laboratory on the same day that they are 						7/
collected may not meet this criterion, but are acceptable if they arrive on ice.)	Yes	N	10	NA NA	Temp:	×- / °C
7. Samples received with iceice packs _ other cooling _	Yes	-	Vo	NA	If NA-re	enson:
8. Is the COC filled out correctly, and completely?	Yes	-	Vo	NA	If NA-re	enson;
9. Information on the COC matches the samples?	Yes	LIN	10	NA NA	lf NA-re	eason:
10. Samples received within holding time?	Yes	N	10	NA	If NA-re	
11. Samples properly labeled?	Yes	N	10	NA	It NA-re	enson:
12. Samples submitted with chemical preservation? (e.g. pH adjusted, or sodium thiosulfate added for microbiological tests)	Yes	,	No l	NA		not need
13. Proper sample containers used?	Yes		10	NA NA	If NA-re	
14. All samples received infact, containers not damaged or leaking?	Yes		10	NA NA	If NA-re	
15. VOA vials (requesting BTEX/VOC analysis) received with no air	1 03		10	NA	If NA-re	no voa
bubbles? Bubbles acceptable on VOA vials for TPH.	Yes	7	10	NA	If NA-re	
16. Sample volume sufficient for requested analysis?	Yes	1	10	NA	If NA-re	eason:
17. Subcontracted Samples: [if Yes, complete the next section]	Yes	N	10 F	NA NA	lf NA-re	eason:
Analyses Subcontracted Out;				No. of Samp	los	
Samples sent to:						
Date samples sent;		s shippo	ad ui			
TAT Requested:	Sumpto	չ արիր	od Al	.a.		
Tracking number (if and)	-					
Comments:			1.00			
Contract Con						
	~~~					
Received By:		Date:		3/2	15/11	
Labeled By:					VIJ	
Logged into LIMS By:		Date:				
Logged into RF By:			_		7	
-65	-	Date:	_			
O:\Forms\Samule Receipt Checklist Form Rev 012010 dea						