Part III

Attachment III-C
Appendix III-C. 4

HYDROCAD MODEL OUTPUTS

Pescadito Environmental Resource Center
 MSW No. 2374
 Webb County, Texas
 PESCADITO

ENVIRONMENTAL RESOURCE CENTER

Initial Submittal March 2015
Supplement April 2015

Prepared for:
 Rancho Viejo Waste Management, LLC
 1116 Calle del Norte

Laredo, TX 78041

Prepared by:
CB\&I Environmental and
Infrastructure, Inc.

12005 Ford Rd, Suite 600
Dallas, TX 75234

Table of Contents

III-C.4-1. Regional Existing Conditions (Pre-CLOMR)
a. Model Diagram
b. 100-year, 24-hour Results (Adjusted Rainfall - 9.5 inches)
c. 25-Year, 24 -hour Results
III-C.4-2. Regional Intermediate Conditions (Post-CLOMR)
a. Model Diagram
b. 100-year, 24-hour Results (Adjusted Rainfall - 9.5 inches)
c. 25-Year, 24 -hour Results
III-C.4-3. Proposed Conditions (Post-Development)
a. Model Diagrams
b. Landfill Watershed A (typical of Watersheds C, E, G, I, K, M, and O)
i. 100-year, 24-hour (Adjusted Rainfall - 9.5 inches)
ii. 25-Year, 24-hour
c. Landfill Watershed B (typical of Watersheds D, F, J, J, L, N, and P)
i. 100-year, 24-hour (Adjusted Rainfall - 9.5 inches)
ii. 25 -Year, 24 -hour
d. Landfill Perimeter Ditch, Culvert, and Basin System
i. 100-year, 24-hour (Adjusted Rainfall - 9.5 inches)
ii. 25-Year, 24 -hour
e. Regional Stormwater Conditions
i. 100-year, 24-hour (Adjusted Rainfall - 9.5 inches)

Attachment III-C

Appendix III-C. 4

HydroCAd Model Output Files

1. REGIONAL EXISTING CONDITIONS (PRE-CLOMR)
A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24 -HOUR RESULTS

Attachment III-C

APPENDIX III-C. 4

HydroCAd Model Output Files

1. REGIONAL EXISTING CONDITIONS (PRE-CLOMR)
A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24-HOUR RESULTS

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. \#67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Summary for Subcatchment DA1: DA1

Runoff $=7,899.97$ cfs @ 14.82 hrs, Volume $=3,272.867$ af, Depth $=5.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (ac)	CN	Description
$6,950.970$	69	

Tc	Length (min)	Slopet (feet)	Velocity (ft/ft)	Capacity (ft/sec)
205.2				Description
(cfs)				

Summary for Subcatchment DA2: DA2

Runoff $=1,687.61$ cfs @ 13.10 hrs, Volume $=363.684$ af, Depth= $5.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Area	(ac)	Description			
772.39869					
772.398		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
80.2					Direct Entry

Summary for Subcatchment DA3: DA3

Runoff = 3,835.91 cfs @ 13.94 hrs, Volume= $1,262.365$ af, Depth= 5.14"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA4: DA4

Runoff $=3,819.68$ cfs @ 15.24 hrs, Volume $=1,830.935$ af, Depth> 5.52"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Reach R1: Reach-1

Inflow Area $=6,950.970$ ac, 0.00% Impervious, Inflow Depth $=5.65$ " for 100-Year, 24-Hour event Inflow $=7,720.42 \mathrm{cfs} @ 15.04 \mathrm{hrs}$, Volume $=3,272.838 \mathrm{af}$ Outflow $=7,720.42 \mathrm{cfs} @ 15.04 \mathrm{hrs}$, Volume $=3,272.838 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Pond BT: Burrito Tank

Inflow Area $=6,950.970$ ac, 0.00% Impervious, Inflow Depth $=5.65$ " for 100 -Year, 24 -Hour event Inflow $=7,899.97$ cfs @ 14.82 hrs, Volume $=3,272.867$ af Outflow $=7,720.42 \mathrm{cfs} @ 15.04 \mathrm{hrs}$, Volume $=3,272.838 \mathrm{af}$, Atten $=2 \%$, Lag= 13.1 min Primary $=7,720.42$ cfs @ 15.04 hrs, Volume $=3,272.838$ af

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Starting Elev=538.00' Surf.Area=39.210 ac Storage= 81.585 af
Peak Elev= 542.05' @ 15.04 hrs Surf.Area= 126.711 ac Storage= 387.422 af (305.837 af above start)
Plug-Flow detention time= 62.9 min calculated for $3,191.253$ af (98% of inflow)
Center-of-Mass det. time $=39.1 \mathrm{~min}(1,043.6-1,004.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	535.00^{\prime}	728.575 af	Custom Stage Data (Prismatic)Listed below (Recaic)

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
535.00	17.460	0.000	0.000
536.00	22.430	19.945	19.945
538.00	39.210	61.640	81.585
540.00	68.110	107.320	188.905
542.00	124.320	192.430	381.335
544.00	222.920	347.240	728.575

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	538.00^{\prime}	Special \& User-Defined

Elev. (feet) 538.00540 .00542 .00542 .12
Disch. (cfs) 0.000 1,167.000 7,118.000 8,608.700
Primary OutFlow Max=7,720.34 cfs @ 15.04 hrs HW=542.05' (Free Discharge)
—1=Special \& User-Defined (Custom Controls 7,720.34 cfs)

Summary for Link J1: Junction-1

Inflow Area $=14,650.117 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=5.51$ " for $100-$ Year, 24 -Hour event Inflow $=14,540.47$ cfs @ 14.94 hrs, Volume $=6,729.821$ af Primary $=14,540.47 \mathrm{cfs} @ 14.94 \mathrm{hrs}$, Volume $=6,729.821 \mathrm{af}$, Atten $=0 \%$, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link Junction-2: Junction-2

Inflow Area $=6,926.749$ ac, 0.00% Impervious, Inflow Depth >5.36 " for 100-Year, 24 -Hour event Inflow $=6,761.72$ cfs @ 14.43 hrs , Volume $=3,093.299 \mathrm{af}$ Primary $=6,761.72 \mathrm{cfs} @ 14.43 \mathrm{hrs}$, Volume $=3,093.299 \mathrm{af}$, Atten $=0 \%$, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

1. REGIONAL EXISTING CONDITIONS (PRE-CLOMR)
A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24-HOUR RESULTS

Summary for Subcatchment DA1: DA1

$$
\text { Runoff }=5,577.72 \mathrm{cfs} @ 14.82 \mathrm{hrs} \text {, Volume }=2,323.852 \text { af, Depth= 4.01" }
$$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment DA2: DA2

Runoff $=1,194.90$ cfs @ 13.10 hrs , Volume $=258.229 \mathrm{af}$, Depth= 4.01"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment DA3: DA3

Runoff $=2,631.28$ cfs @ 13.94 hrs, Volume $=877.893$ af, Depth= 3.57"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment DA4: DA4

Runoff $=2,669.37$ cfs @ 15.24 hrs, Volume $=1,293.536$ af, Depth> 3.90"
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

249.3

Direct Entry,

Summary for Reach R1: Reach-1

Inflow Area $=6,950.970$ ac, 0.00% Impervious, Inflow Depth $=4.01 "$ for $25-$ Year, 24 -Hour event
Inflow $=5,325.73 \mathrm{cfs} @ 15.23 \mathrm{hrs}$, Volume $=\quad 2,323.830 \mathrm{af}$
Outflow $=5,325.73 \mathrm{cfs} @ 15.23 \mathrm{hrs}$, Volume $=\quad 2,323.830 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Pond BT: Burrito Tank

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
535.00	17.460	0.000	0.000
536.00	22.430	19.945	19.945
538.00	39.210	61.640	81.585
540.00	68.110	107.320	188.905
542.00	124.320	192.430	381.335
544.00	222.920	347.240	728.575

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	538.00^{\prime}	Special \& User-Defined

Elev. (feet) 538.00540 .00542 .00542 .12
Disch. (cfs) $0.0001,167.000$ 7,118.000 8,608.700
Primary OutFlow Max=5,325.72 cfs @ 15.23 hrs HW=541.40' (Free Discharge)
© $1=$ Special \& User-Defined (Custom Controls $5,325.72$ cfs)

Summary for Link J1: Junction-1

Inflow Area $=14,650.117$ ac, $\quad 0.00 \%$ Impervious, Inflow Depth $=3.89$ " for $25-$ Year, 24 -Hour event Inflow $=10,046.73$ cfs @ 14.95 hrs, Volume $=4,753.488$ af
Primary $=10,046.73 \mathrm{cfs}$ @ 14.95 hrs , Volume= $4,753.488 \mathrm{af}$, Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link Junction-2: Junction-2

Inflow Area $=6,926.749 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth > 3.76" for 25-Year, 24-Hour event Inflow $=4,670.81$ cfs @ 14.44 hrs, Volume $=2,171.429 \mathrm{af}$
Primary $=4,670.81 \mathrm{cfs} @ 14.44 \mathrm{hrs}$, Volume $=2,171.429 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Attachment III-C

 Appendix III-C. 4
HydroCAd Model Output Files

2. REGIONAL INTERMEDIATE CONDITIONS (POST-CLOMR)

A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24-HOUR RESULTS

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

2. REGIONAL INTERMEDIATE CONDITIONS (POST-CLOMR)
A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24-HOUR RESULTS

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. \#67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650.

Summary for Subcatchment DA1: DA1

Runoff $=6,885.92$ cfs @ 14.39 hrs , Volume= $2,522.438$ af, Depth= 5.78"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

$\begin{array}{lrl}\text { Area (ac) } & \text { CN } & \text { Description }\end{array}$					
5,238	870	100.00\% Pervious Area			Description
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	
172.8					Direct Entry

Summary for Subcatchment DA2: DA2
Runoff $=2,084.30 \mathrm{cfs} @ 13.53 \mathrm{hrs}$, Volume= 556.965 af , Depth= 5.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (ac)	CN	Description
$1,182.892$	69	
	100.00% Pervious Area	

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)
109.8				Description

Summary for Subcatchment DA3: DA3

Runoff $=4,709.99$ cfs @ 13.94 hrs, Volume= $1,547.636 \mathrm{af}$, Depth= $5.27{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA4: DA4

Runoff $=3,819.89$ cfs @ 15.23 hrs , Volume= $1,830.927$ af, Depth> 5.52"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA5: DA5

Runoff $=471.92$ cfs @ 12.70 hrs, Volume= 78.776 af, Depth= 4.75"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA6: DA6

Runoff $=380.18$ cfs @ 12.51 hrs, Volume $=51.712$ af, Depth= 4.62"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

| | Area (ac) | CN |
| :--- | ---: | :--- | Description $\quad 0$.

Tc	Length (min)	Slope (feet)	Velocity (ft/f)		
(ft/sec)					Capacity
---:					
(cfs)					

Summary for Subcatchment DA7: DA7

Runoff $=1,024.74$ cfs @ 12.68 hrs , Volume $=162.924$ af, Depth= $5.01^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.88 \mathrm{fps}$, Min. Travel Time $=10.2 \mathrm{~min}$
Avg. Velocity $=2.21 \mathrm{fps}$, Avg. Travel Time $=22.7 \mathrm{~min}$
Peak Storage= 3,652,289 cf @ 15.17 hrs
Average Depth at Peak Storage= 3.99'
Bank-Full Depth=5.00' Flow Area= 1,780.0 sf, Capacity= 9,903.65 cfs
$106.00^{\prime} \times 5.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 50.0 '/' Top Width=606.00'
Length $=3,000.0^{\prime}$ Slope $=0.0030 \mathrm{\prime} / \mathrm{/}$
Inlet Invert=542.00', Outlet Invert=533.00'

Summary for Pond 2P: NW Detention Basin

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Peak Elev=567.40' @ 25.98 hrs Surf.Area= 10.150 ac Storage= 51.712 af
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=562.00' (Free Discharge)
—1=Special \& User-Defined (Controls 0.00 cfs)

Summary for Pond 3P: NE Detention Basin

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=561.85' @ 26.67 hrs Surf.Area= 28.725 ac Storage= 162.924 af
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	556.00^{\prime}	167.280 af	Custom Stage Data (Prismatic)Listed below (Recalc)

Summary for Pond BT: West Detention Basin

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=547.57' @ 15.04 hrs Surf.Area=118.164 ac Storage= 348.911 af
Plug-Flow detention time $=34.9$ min calculated for $2,600.492$ af (100% of inflow)
Center-of-Mass det. time $=34.9 \mathrm{~min}(1,004.3-969.4)$

Primary OutFlow Max=5,960.38 cfs @ 15.04 hrs HW=547.57' (Free Discharge)
-1=Special \& User-Defined (Custom Controls 5,960.38 cfs)

Summary for Link J1: Junction-1

Inflow Area $=14,125.636$ ac, 0.00% Impervious, Inflow Depth $=5.55^{\prime \prime}$ for 100-Year, 24 -Hour event
Inflow = 14,083.77 cfs @ 14.59 hrs , Volume= $6,536.616 \mathrm{af}$
Primary $=14,083.77$ cfs @ 14.59 hrs , Volume= $6,536.616 \mathrm{af}$, Atten= 0\%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link Junction-2: Junction-2

Inflow Area $=7,504.997$ ac, 0.00% Impervious, Inflow Depth $=5.40$ for 100-Year, 24 -Hour event Inflow $=7,557.51$ cfs @ 14.40 hrs , Volume $=3,378.563 \mathrm{af}$ Primary $=7,557.51$ cfs @ 14.40 hrs , Volume $=3,378.563 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

2. REGIONAL INTERMEDIATE CONDITIONS (POST-CLOMR)

A. MODEL DIAGRAM
B. 100-YEAR, 24-HOUR RESULTS
C. 25-YEAR, 24-HOUR RESULTS

CLOMR Proposed Direct Entry
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60" Prepared by CB\&I Environmental and Infrastructure, Inc.

Printed 4/1/2015 HydroCAD® 10.00 s/n 04891 © 2011 HydroCAD Software Solutions LLC

Page 1

Summary for Subcatchment DA1: DA1

Runoff $=4,896.53 \mathrm{cfs} @ 14.39 \mathrm{hrs}$, Volume $=1,799.803 \mathrm{af}$, Depth= 4.12"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

172.8

Direct Entry,

Summary for Subcatchment DA2: DA2

Runoff $=1,475.85 \mathrm{cfs} @ 13.53 \mathrm{hrs}$, Volume $=395.465 \mathrm{af}$, Depth= 4.01"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment DA3: DA3

Runoff $=3,254.49 \mathrm{cfs} @ 13.94$ hrs, Volume= $1,082.099 \mathrm{af}$, Depth= 3.68"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (ac)	CN	Description
* 3,526.389	66	
3,526.389		100.00\% Pervious Area

| Tc
 (min) | Length
 (feet) | Slope
 (ft/ft) | Velocity
 (ft/sec) | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description | Direct Entry, |
| :--- |

Summary for Subcatchment DA4: DA4

Runoff $=2,669.42 \mathrm{cfs} @ 15.23$ hrs, Volume= $1,293.530$ af, Depth> 3.90"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment DA5: DA5

Runoff $=317.73 \mathrm{cfs} @ 12.70 \mathrm{hrs}$, Volume= $\quad 53.856 \mathrm{af}$, Depth= $3.25{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (ac)	Description			
* 198.877	62			
198.877	100.00\% Pervious Area			
Tc Length (min) (feet)	t) $\begin{array}{r}\text { Slope } \\ (f t / f t)\end{array}$	Velocity (ft/sec)	Capacity (cfs)	Description

52.2

Direct Entry,

Summary for Subcatchment DA6: DA6

Runoff $=255.01$ cfs @ 12.51 hrs, Volume= $\quad 35.140$ af, Depth= $3.14^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (ac) CN Description 					
134.177		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
35.1					Direct Entry

Summary for Subcatchment DA7: DA7

Runoff $=703.60$ cfs @ 12.69 hrs, Volume= 112.678 af, Depth= 3.46 "
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (ac)	Description			
* 390.234				
390.234	100.00\% Pervious Area			Description
Tc Length (min) (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	
47.8				Direct Entry

Summary for Reach R1: Reach-1

Inflow Area $=5,437.747$ ac, 0.00% Impervious, Inflow Depth $=4.09$ " for $25-Y e a r, 24-$ Hour event Inflow $=4,306.67$ cfs @ 15.03 hrs , Volume $=1,853.659$ af Outflow $=4,287.68 \mathrm{cfs} @ 15.17 \mathrm{hrs}$, Volume $=1,853.544 \mathrm{af}$, Atten $=0 \%$, Lag $=8.6 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.48 fps , Min. Travel Time $=11.2 \mathrm{~min}$
Avg. Velocity $=2.03 \mathrm{fps}$, Avg. Travel Time $=24.7$ min
Peak Storage= 2,868,645 cf @ 15.17 hrs
Average Depth at Peak Storage=3.44'
Bank-Full Depth= 5.00' Flow Area= 1,780.0 sf, Capacity= 9,903.65 cfs
$106.00^{\prime} \times 5.00$ deep channel, $n=0.030$
Side Slope Z-value= 50.0 '/' Top Width=606.00'
Length $=3,000.0$ ' Slope $=0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert=542.00', Outlet Invert=533.00'

Summary for Pond 2P: NW Detention Basin

Inflow Area =	134.177 ac,	0.00\%	Depth $=3$.	4" for 25-Year, 24-Hour event
Inflow	255.01 cfs @	12.51 hrs , Volume=	35.140 af	
Outflow	0.00 cfs @	0.00 hrs , Volume=	0.000 af ,	Atten $=100 \%$, Lag $=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs

Peak Elev=565.73' @ 25.98 hrs Surf.Area= 9.796 ac Storage= 35.140 af
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Summary for Pond 3P: NE Detention Basin

Primary OutFlow Max $=0.00 \mathrm{cfs} @ 0.00$ hrs HW=556.00' (Free Discharge)
—1=556562 (Controls 0.00 cfs)

Summary for Pond BT: West Detention Basin

Inflow Area	5,4	0.00\%	Depth = 4.0	09" for 25-Year, 24-Hour event
Inflow	4,962.34 cfs @	14.39 hrs , Volume=	1,853.659 af	
Outflow	4,306.67 cfs @	15.03 hrs , Volume=	1,853.659 af,	Atten $=13 \%$, Lag $=38.4 \mathrm{~min}$
Primary	4,306.67 cfs @	15.03 hrs , Volume=	1,853.659 af	

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=546.47' @ 15.03 hrs Surf.Area= 101.375 ac Storage= 228.455 af
Plug-Flow detention time $=31.7$ min calculated for $1,853.144$ af (100% of inflow)
Center-of-Mass det. time= $31.7 \mathrm{~min}(1,010.9-979.2$)

Primary OutFlow Max=4,306.67 cfs @ 15.03 hrs HW=546.47' (Free Discharge)
—1=Special \& User-Defined (Custom Controls 4,306.67 cfs)

Summary for Link J1: Junction-1

Inflow Area = 14,125.636 ac, 0.00\% Impervious, Inflow Depth > 3.93" for 25-Year, 24-Hour event Inflow $=9,953.70 \mathrm{cfs} @ 14.67 \mathrm{hrs}$, Volume= $4,624.639 \mathrm{af}$ Primary $=9,953.70$ cfs @ 14.67 hrs , Volume $=4,624.639 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link Junction-2: Junction-2

Inflow Area $=7,504.997$ ac, 0.00% Impervious, Inflow Depth > 3.80" for 25-Year, 24-Hour event Inflow $=5,240.76$ cfs @ 14.41 hrs , Volume= $2,375.630 \mathrm{af}$ Primary $=5,240.76$ cfs @ 14.41 hrs , Volume= $2,375.630 \mathrm{af}$, Atten= 0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Attachment III-C

Appendix III-C. 4

HydroCAd Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, AND O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, AND P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, AND BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

This document is released for the purpose of permitting only under the authority of Michael W. Oden, P.E. \#67165. It is not to be used for bidding or construction. Texas Registered Engineering Firm F-5650

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 1

Summary for Subcatchment 1ULS: 1 Upper Left Subcat

Runoff $=12.12 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 0.923 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 1URS: 1 Upper Right Subcat

Runoff $=11.95$ cfs @ 12.07 hrs, Volume $=0.910 \mathrm{af}$, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf) CN Description					
*	55,761	92			
55,761 100.00\% Pervious Area					
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \quad P 2=3.75^{\prime \prime}$

Summary for Subcatchment 2LLS: 2 Lower Left Subcat

Runoff $=\quad 6.49$ cfs @ 12.07 hrs, Volume= $\quad 0.494$ af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 2

Summary for Subcatchment 2LRS: 2 Lower Right Subcat

Runoff $=\quad 6.36$ cfs @ 12.07 hrs, Volume= 0.484 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 2ULS: 2 Upper Left Subcat

Runoff $=15.22$ cfs @ 12.07 hrs, Volume= 1.159 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf) CN Description

*	71,032	92
71,032	100.00%	
		Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment 2URS: 2 Upper Right Subcat

Runoff $=14.92$ cfs @ 12.07 hrs, Volume= 1.136 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 3LLS: 3 Lower Left Subcat

Runoff $=14.95 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=\quad 1.139 \mathrm{af}$, Depth $=8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 3LRS: 3 Lower Right Subcat

Runoff $=14.56$ cfs @ 12.07 hrs, Volume= $\quad 1.109$ af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall $=9.50^{\prime \prime}$

Area (sf)		CN Description			
*	67,944	92			
67,944		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { ' } \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 3ULS: 3 Upper Left Subcat

Runoff $=\quad 16.73$ cfs @ 12.07 hrs, Volume $=\quad 1.274$ af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 3URS: 3 Upper Right Subcat

Runoff $=16.41$ cfs @ 12.07 hrs, Volume= $\quad 1.250$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4LLS: 4 Lower Left Subcat

Runoff $=6.48$ cfs @ 12.07 hrs , Volume= $\quad 0.494$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4LRS: 4 Lower Right Subcat

Runoff $=\quad 6.35$ cfs @ 12.07 hrs , Volume $=\quad 0.484$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4MLS: 4 Middle Left Subcat

Runoff $=18.43$ cfs @ 12.07 hrs, Volume= 1.404 af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50^{\prime \prime}$

	rea (sf)	CN Description			
*	86,016	92			
86,016		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment 4MRS: 4 Middle Right Subcat

Runoff $=17.91$ cfs @ 12.07 hrs, Volume= $\quad 1.364$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4ULS: 4 Upper Left Subcat

Runoff $=16.74$ cfs @ 12.07 hrs, Volume= $\quad 1.275$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4URS: 4 Upper Right Subcat

Runoff $=16.41$ cfs @ 12.07 hrs, Volume= 1.249 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Reach 1DC: 1 Downchute

Inflow Area $=\quad 2.578$ ac, 0.00% Impervious, Inflow Depth $=8.53$ " for 100-Year, 24-Hour event Inflow = 9.92 cfs @ 12.27 hrs, Volume= 1.833 af Outflow $=9.92$ cfs @ 12.28 hrs , Volume $=1.833 \mathrm{af}$, Atten $=0 \%$, Lag $=0.6 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=4.71 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.9 \mathrm{~min}$
Avg. Velocity $=1.98 \mathrm{fps}$, Avg. Travel Time $=2.1 \mathrm{~min}$
Peak Storage=515cf @ 12.28 hrs
Average Depth at Peak Storage=0.14'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= $2,139.83$ cfs
15.00' x 3.00' deep channel, $n=0.035$

Side Slope Z-value= 3.0 ' $/ \prime$ Top Width= 33.00'
Length=245.0' Slope= 0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Summary for Reach 1DC2: 1 Downchute 2\%
Inflow Area $=\quad 2.578$ ac, 0.00% Impervious, Inflow Depth $=8.53$ " for 100-Year, 24 -Hour event Inflow = 9.92 cfs @ 12.26 hrs, Volume= 1.833 af Outflow =
9.92 cfs @ 12.27 hrs, Volume=
1.833 af, Atten $=0 \%$, Lag $=0.3 \mathrm{~min}$

Watershed A

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.38 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=0.84 \mathrm{fps}$, Avg. Travel Time $=1.5 \mathrm{~min}$
Peak Storage= 312 cf @ 12.27 hrs
Average Depth at Peak Storage= 0.26'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length= 75.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= -3.50'

Summary for Reach 2DC: 2 Downchute
Inflow Area $=\quad 7.183 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24-Hour event Inflow $=23.44$ cfs @ 12.45 hrs , Volume= $\quad 5.106 \mathrm{af}$ Outflow = $23.43 \mathrm{cfs} @ 12.45 \mathrm{hrs}$, Volume $=\quad 5.106 \mathrm{af}$, Atten $=0 \%$, Lag= 0.4 min

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=6.54 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.6 \mathrm{~min}$
Avg. Velocity $=2.49 \mathrm{fps}$, Avg. Travel Time $=1.6 \mathrm{~min}$
Peak Storage $=878$ cf @ 12.45 hrs
Average Depth at Peak Storage $=0.23^{\prime}$
Bank-Full Depth $=3.00^{\prime}$ Flow Area= 72.0 sf, Capacity= $2,139.83$ cfs
$15.00^{\prime} \times 3.00$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=245.0' Slope= 0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Summary for Reach 2DC2: 2 Downchute 2\%

Inflow Area	$=$	7.183 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$23.44 \mathrm{cfs} @$	12.44 hrs , Volume=	5.106 af
Outflow	$=$	$23.44 \mathrm{cfs} @$	12.45 hrs , Volume=	5.106 af , Atten $=0 \%$, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.28 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=1.21 \mathrm{fps}$, Avg. Travel Time $=1.0 \mathrm{~min}$
Peak Storage= 537 cf @ 12.45 hrs
Average Depth at Peak Storage $=0.44^{\prime}$
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=75.0' Slope $=0.0200$ ' $/$ '
Inlet Invert=-2.00', Outlet Invert= -3.50'

Summary for Reach 3DC: 3 Downchute

Inflow Area	$=$	13.895 ac,	0.00% Impervious, Inflow Depth $=8.53 \mathrm{l}$	for $100-$ Year, 24 -Hour event
Inflow	$=$	$55.78 \mathrm{cfs} @$	12.12 hrs , Volume $=$	9.878 af
Outflow	$=$	$55.73 \mathrm{cfs} @$	12.12 hrs , Volume $=$	9.878 af , Atten $=0 \%$, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=9.02 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=3.11 \mathrm{fps}$, Avg. Travel Time $=1.3 \mathrm{~min}$
Peak Storage= 1,513 cf @ 12.12 hrs
Average Depth at Peak Storage $=0.38^{\prime}$
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 2,139.83 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=245.0' Slope $=0.1800$ '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Summary for Reach 3DC2: 3 Downchute 2\%

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.45 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.54 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 939 cf @ 12.12 hrs
Average Depth at Peak Storage= 0.73'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=75.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= $\mathbf{- 3 . 5 0}$

Summary for Reach 4DC: 4 Downchute

Inflow Area $=\quad 22.714$ ac, 0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow = 109.14 cfs @ 12.13 hrs, Volume= 16.147 af Outflow $=109.00 \mathrm{cfs} @ 12.13 \mathrm{hrs}$, Volume $=16.147 \mathrm{af}$, Atten $=0 \%$, Lag= 0.3 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 11.49 fps , Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=3.69 \mathrm{fps}$, Avg. Travel Time $=1.4 \mathrm{~min}$
Peak Storage=2,844 cf @ 12.13 hrs
Average Depth at Peak Storage= 0.57'
Bank-Full Depth $=3.00^{\prime}$ Flow Area= $\mathbf{7 2 . 0}$ sf, Capacity= $2,139.83 \mathrm{cfs}$
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length=300.0' Slope= 0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -56.00'

Summary for Reach 4DC2: 4 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.58 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.84 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 1,466 cf @ 12.13 hrs
Average Depth at Peak Storage= 1.07'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length $=75.0^{\prime}$ Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= $\mathbf{- 3 . 5 0}$

Summary for Pond 1ULT: 1 Upper Left Terrace

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200$ '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area= 0.76 sf

Primary OutFlow Max=4.97 cfs @ 12.26 hrs HW=3.46' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 4.97 cfs @ 6.55 fps)

Summary for Pond 1URT: 1 Upper Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=3.42' @ 12.26 hrs Surf.Area= 4,039 sf Storage $=5,685 \mathrm{cf}$
Plug-Flow detention time $=6.6 \mathrm{~min}$ calculated for 0.910 af (100% of inflow)
Center-of-Mass det. time $=6.6 \mathrm{~min}(770.7-764.0)$

Primary OutFlow Max=4.94 cfs @ 12.26 hrs HW=3.42' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 4.94 cfs @ 6.51 fps)

Summary for Pond 2LLT: 2 Lower Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.05' @ 12.41 hrs Surf.Area= 5,209 sf Storage= $8,593 \mathrm{cf}$
Plug-Flow detention time $=10.8 \mathrm{~min}$ calculated for 1.653 af (100% of inflow)
Center-of-Mass det. time $=10.8 \mathrm{~min}(781.1-770.3)$

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \text { Elevation } \\ \text { (feet) } \\ \hline \end{array}$	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($C=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\circ} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=7.05 cfs @ 12.41 hrs HW=4.05' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $1.60 \mathrm{cfs} @ 0.77 \mathrm{fps}$)
$\mathbf{- 2 = C u l v e r t ~ (I n l e t ~ C o n t r o l s ~} 5.45$ cfs @ 7.18 fps)

Summary for Pond 2LRT: 2 Lower Right Terrace

Inflow Area $=$	2.279 ac,	0.00% Impervious, Inflow Depth $=8.53 "$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$11.19 \mathrm{cfs} @$	12.08 hrs, Volume $=$
Outflow	$=$	$6.76 \mathrm{cfs} @$	12.46 hrs , Volume $=$
Primary	$=$	$6.76 \mathrm{cfs} @$	12.46 hrs, Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 4.05 @ 12.46 hrs Surf.Area= 5,192 sf Storage $=8,552 \mathrm{cf}$
Plug-Flow detention time $=10.8 \mathrm{~min}$ calculated for 1.620 af (100% of inflow)
Center-of-Mass det. time= 10.8 min (781.0-770.2)

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ (c) 2011 HydroCAD Software Solutions LLC
Page 13

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	$4.00{ }^{\prime}$	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \quad / / \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=6.71 cfs @ 12.46 hrs HW=4.05' (Free Discharge)
中-1=Custom Weir/Orifice (Weir Controls 1.27 cfs @ 0.71 fps)
-2=Culvert (Inlet Controls 5.44 cfs @ 7.17 fps)

Summary for Pond 2ULT: 2 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.02' @ 12.28 hrs Surf.Area= 5,142 sf Storage= 8,431 cf
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 1.159 af (100% of inflow)
Center-of-Mass det. time $=8.9 \mathrm{~min}$ (772.9 - 764.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.99' @ 12.31 hrs Surf.Area= 5,076 sf Storage= 8,270 of
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 1.136 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}(772.9-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

[^0]
Summary for Pond 3LLT: 3 Lower Left Terrace

Inflow Area =	3.394 ac ,	0.00\%	w Depth $=8.53$ " for 100-Year, 24-Hour event
Inflow	19.97 cfs @	12.08 hrs, Volume=	2.413 af
Outflow	18.87 cfs @	12.11 hrs , Volume=	2.413 af, Atten $=6 \%$, Lag $=2.0 \mathrm{~min}$
Primary	18.87 cfs @	12.11 hrs , Volume=	2.413 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.22' @ 12.11 hrs Surf.Area=5,568 sf Storage= 9,495 cf
Plug-Flow detention time $=9.6 \mathrm{~min}$ calculated for 2.412 af (100% of inflow)
Center-of-Mass det. time $=9.6 \mathrm{~min}(778.3-768.7)$

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\circ} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=18.84 cfs @ 12.11 hrs HW=4.22' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 13.26 cfs @ 1.54 fps)
2=Culvert (Inlet Controls 5.58 cfs @ 7.34 fps)

Summary for Pond 3LRT: 3 Lower Right Terrace

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 16

Summary for Pond 3ULT: 3 Upper Left Terrace

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 4.09' @ 12.19 hrs Surf.Area= 5,293 sf Storage $=8,800$ of
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 1.274 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}(772.8-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / \prime \quad \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area= 0.76 sf

Primary OutFlow Max=9.09 cfs @ 12.19 hrs HW=4.09' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 3.61 cfs @ 1.00 fps)
-2=Culvert (Inlet Controls 5.48 cfs @ 7.21 fps)

Summary for Pond 3URT: 3 Upper Right Terrace

Inflow Area =	1.758 ac	0.00\% Impervious, In	Inflow Depth $=8.53{ }^{\prime \prime}$ for 100-Year, 24-Hour event
Inflow	16.41 cfs @	12.07 hrs , Volume=	1.250 af
Outflow	8.45 cfs @	12.20 hrs , Volume=	1.250 af, Atten $=48 \%$, Lag $=7.5 \mathrm{~min}$
Primary	8.45 cfs @	12.20 hrs , Volume=	1.250 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.08' @ 12.20 hrs Surf.Area= 5,267 sf Storage= 8,734 cf
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 1.250 af (100% of inflow)
Center-of-Mass det. time $=8.9 \mathrm{~min}(772.9-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / / \quad \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=8.40 cfs @ 12.20 hrs HW=4.08' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $2.93 \mathrm{cfs} @ 0.93 \mathrm{fps}$)
$\mathbf{- 2 = C u l v e r t ~ (I n l e t ~ C o n t r o l s ~} 5.47 \mathrm{cfs}$ @ 7.20 fps)

Summary for Pond 4LLT: 4 Lower Left Terrace

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{I} / \mathrm{l} \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=27.20 cfs @ 12.12 hrs HW=4.31' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 21.56 cfs @ 1.80 fps)
-2=Culvert (Inlet Controls 5.64 cfs @ 7.42 fps)

Summary for Pond 4LRT: 4 Lower Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.30' @ 12.13 hrs Surf.Area= $5,727 \mathrm{sf}$ Storage $=9,914 \mathrm{cf}$
Plug-Flow detention time $=10.4$ min calculated for 3.097 af (100% of inflow)
Center-of-Mass det. time $=10.4 \mathrm{~min}(785.8-775.5)$

Volume	Invert Av	vail.Storage Stora	escription
\#1	0.00'	12,399 cf Cust	Custom Stage Data (Pr
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00		00	0
0.10	41	41 2	2
1.00	716	6 341	343
2.00	1,803	1,260	1,602
3.00	3,261	1 2,532	4,134
4.00	5,091	1 4,176	8,310
4.70	6,592	2 4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / \prime \quad \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area= 0.76 sf

Primary OutFlow Max=26.16 cfs @ 12.13 hrs HW=4.30' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 20.52 cfs @ 1.77 fps)
-2=Culvert (Inlet Controls 5.63 cfs @ 7.41 fps)

Summary for Pond 4MLT: 4 Middle Left Terrace

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\begin{array}{ll}\text { Prepared by CB\&I Environmental and Infrastructure, Inc. } & \text { Printed } 4 / 1 / 2015 \\ \text { HydroCAD® } 10.00 \text { s/n } 04891 \text { © } 2011 \text { HydroCAD Software Solutions LIC }\end{array}$
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 20

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70
	Primary		Width (feet) 38.0042 .90
		0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 \%$ ' $/$ cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=22.87 cfs @ 12.10 hrs HW=4.26' (Free Discharge)
——1=Custom Weir/Orifice (Weir Controls 17.27 cfs @ 1.68 fps)
$\mathbf{2 = C u l v e r t ~ (I n l e t ~ C o n t r o l s ~} 5.61$ cfs @ 7.38 fps)

Summary for Pond 4MRT: 4 Middle Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.26' @ 12.10 hrs Surf.Area= 5,646 sf Storage $=9,700$ of
Plug-Flow detention time $=9.3 \mathrm{~min}$ calculated for 2.613 af (100% of inflow)
Center-of-Mass det. time $=9.3 \mathrm{~min}(777.6-768.3$)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 / / \prime \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=22.27 cfs @ 12.10 hrs HW=4.26' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 16.66 cfs @ 1.66 fps)
2=Culvert (Inlet Controls 5.60 cfs @ 7.38 fps)

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD(B) $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 21

Summary for Pond 4ULT: 4 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 4.09' @ 12.19 hrs Surf.Area=5,294 sf Storage= 8,801 cf
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 1.274 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}(772.8-764.0)$

Volume	Invert Avai	il.Storage Storag	escription
\#1	0.00'	12,399 cf Custom Stage Data (Prismatic)Listed below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$ Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=9.10 cfs @ 12.19 hrs HW=4.09' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 3.62 cfs @ 1.00 fps)
—2=Culvert (Inlet Controls $5.48 \mathrm{cfs} @ 7.21 \mathrm{fps}$)

Summary for Pond 4URT: 4 Upper Right Terrace

Inflow Area $=$	1.758 ac,	0.00% Impervious, Inflow Depth $=8.53 "$	for $100-$ Year, 24 -Hour event	
Inflow	$=$	$16.41 \mathrm{cfs} @$	12.07 hrs, Volume	1.249 af
Outflow	$=$	$8.44 \mathrm{cfs} @$	12.20 hrs, Volume $=$	1.249 af, Atten $=49 \%$, Lag= $=7.5 \mathrm{~min}$
Primary	$=$	$8.44 \mathrm{cfs} @$	12.20 hrs, Volume $=$	1.249 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.08' @ 12.20 hrs Surf.Area= $5,266 \mathrm{sf}$ Storage $=8,732 \mathrm{cf}$
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 1.249 af (100% of inflow)
Center-of-Mass det. time $=8.9 \mathrm{~min}(772.9-764.0)$

Watershed A
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "
Prepared by CB\&I Environmental and Infrastructure, Inc.
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Technically Complete, March 11, 2016

Attachment III-C

Appendix III-C. 4

HydroCAd Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Watershed A

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 1

Summary for Subcatchment 1ULS: 1 Upper Left Subcat

Runoff $=\quad 9.57$ cfs @ 12.07 hrs , Volume= $\quad 0.719 \mathrm{af}$, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 1URS: 1 Upper Right Subcat

Runoff $=\quad 9.44$ cfs @ 12.07 hrs, Volume $=\quad 0.709$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN Description			
*	55,761	92			
55,761		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 2LLS: 2 Lower Left Subcat

Runoff $=\quad 5.12$ cfs @ 12.07 hrs, Volume $=\quad 0.385$ af, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Area (sf) CN Description

$\star \quad 30,267$	92	
30,267	100.00% Pervious Area	

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$	

Summary for Subcatchment 2LRS: 2 Lower Right Subcat

Runoff $=\quad 5.02$ cfs @ 12.07 hrs, Volume= $\quad 0.377$ af, Depth= $6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN Description			
*	29,657	92			
29,657		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow,

Summary for Subcatchment 2ULS: 2 Upper Left Subcat

Runoff $=\quad 12.03 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 0.903 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	71,032	92			
71,032		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 2URS: 2 Upper Right Subcat

Runoff $=\quad 11.79$ cfs @ 12.07 hrs, Volume $=\quad 0.885$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
$\frac{69,616}{69,616}$		92			
		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ftft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		$\begin{aligned} & \text { Sheet Flow, } \\ & \mathrm{n}=0.150 \quad \mathrm{P} 2=3.75 \text { " } \end{aligned}$

Summary for Subcatchment 3LLS: 3 Lower Left Subcat

Runoff $=11.81$ cfs @ 12.07 hrs, Volume $=0.887$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 3LRS: 3 Lower Right Subcat

Runoff $=11.50$ cfs @ 12.07 hrs, Volume $=0.864$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	67,944	92			
67,944		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
5.3	179	0.2500	0.57		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 3ULS: 3 Upper Left Subcat

Runoff $=13.22 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=\quad 0.993 \mathrm{af}$, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 3URS: 3 Upper Right Subcat

Runoff $=\quad 12.97$ cfs @ 12.07 hrs, Volume= $\quad 0.974$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 4LLS: 4 Lower Left Subcat

Runoff $=\quad 5.12$ cfs @ 12.07 hrs, Volume= $\quad 0.385$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
*	30,248	92			
	30,248		00.00\% P	rvious Area	
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 4LRS: 4 Lower Right Subcat

Runoff $=\quad 5.02$ cfs @ 12.07 hrs, Volume $=\quad 0.377$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 4MLS: 4 Middle Left Subcat

Runoff $=14.56$ cfs @ 12.07 hrs, Volume $=\quad 1.094$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 4MRS: 4 Middle Right Subcat

Runoff $=14.15$ cfs @ 12.07 hrs, Volume= 1.063 af , Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
*		92			
$83,584$		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 4ULS: 4 Upper Left Subcat

Runoff $=13.22 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=\quad 0.993 \mathrm{af}$, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description

*	78,096	92
78,096		100.00% Pervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$	

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC Page 6

Summary for Subcatchment 4URS: 4 Upper Right Subcat

Runoff $=12.96 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=\quad 0.974$ af, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
$\frac{76,557}{76,557}$		92			
		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Reach 1DC: 1 Downchute

Inflow Area $=$	2.578 ac,	0.00% Impervious,	Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$8.97 \mathrm{cfs} @$	12.23 hrs , Volume $=$	1.428 af
Outflow	$=$	$8.96 \mathrm{cfs} @$	12.24 hrs , Volume=	1.428 af , Atten $=0 \%$, Lag $=0.6 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.53 \mathrm{fps}$, Min. Travel Time $=0.9 \mathrm{~min}$
Avg. Velocity $=1.91 \mathrm{fps}$, Avg. Travel Time $=2.1 \mathrm{~min}$
Peak Storage= 485 cf @ 12.24 hrs
Average Depth at Peak Storage $=0.13^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity=2,139.83 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=245.0' Slope= 0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Summary for Reach 1DC2: 1 Downchute 2\%

Watershed A

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 7
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.29 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=0.79 \mathrm{fps}$, Avg. Travel Time $=1.6 \mathrm{~min}$
Peak Storage= 293 cf @ 12.23 hrs
Average Depth at Peak Storage= 0.25^{\prime}
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length= 75.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= -3.50'

Summary for Reach 2DC: 2 Downchute

Inflow Area $=$	7.183 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$18.90 \mathrm{cfs} @$	12.34 hrs, Volume $=$
Outflow	$=$	$18.90 \mathrm{cfs} @$	12.34 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=6.03 \mathrm{fps}$, Min. Travel Time $=0.7 \mathrm{~min}$
Avg. Velocity $=2.33 \mathrm{fps}$, Avg. Travel Time $=1.8 \mathrm{~min}$

Peak Storage= 769 cf @ 12.34 hrs

Average Depth at Peak Storage= 0.20^{\prime}
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= $2,139.83$ cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=245.0' Slope=0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Summary for Reach 2DC2: 2 Downchute 2\%

Inflow Area $=$	7.183 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$18.90 \mathrm{cfs} @$	12.33 hrs, Volume $=$
Outflow	$=$	$18.90 \mathrm{cfs} @$	12.34 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.03 \mathrm{fps}$, Min. Travel Time $=0.4 \mathrm{~min}$
Avg. Velocity $=1.11 \mathrm{fps}$, Avg. Travel Time $=1.1 \mathrm{~min}$
Peak Storage= 468 cf @ 12.34 hrs
Average Depth at Peak Storage $=0.39^{\prime}$
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/ \prime$ Top Width= 33.00'
Length= 75.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= -3.50^{\prime}

Summary for Reach 3DC: 3 Downchute

Inflow Area = 13.895 ac, 0.00% Impervious, Inflow Depth $=6.65$ " for 25 -Year, 24 -Hour event
Inflow $=\quad 43.12$ cfs @ 12.17 hrs , Volume= $\quad 7.697 \mathrm{af}$
Outflow $=43.07$ cfs @ 12.17 hrs , Volume $=\quad 7.697 \mathrm{af}$, Atten $=0 \%$, Lag= 0.3 min
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=8.20 \mathrm{fps}$, Min. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=2.86 \mathrm{fps}$, Avg. Travel Time $=1.4 \mathrm{~min}$
Peak Storage $=1,286$ cf @ 12.17 hrs
Average Depth at Peak Storage= 0.33'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 2,139.83 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length $=245.0^{\prime}$ Slope $=0.1800$ '/'
Inlet Invert= -2.00', Outlet Invert= -46.10'

Watershed A

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 9

Summary for Reach 3DC2: 3 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.07 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 794 cf @ 12.17 hrs
Average Depth at Peak Storage= 0.63^{\prime}
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length=75.0' Slope $=0.0200$ '/
Inlet Invert= -2.00', Outlet Invert= -3.50'

Summary for Reach 4DC: 4 Downchute

Inflow Area	$=$	22.714 ac,	0.00%	Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event
Inflow	$=$	$74.82 \mathrm{cfs} @$	12.19 hrs, Volume $=$	12.583 af
Outflow	$=$	$74.63 \mathrm{cfs} @$	12.20 hrs , Volume $=$	12.583 af , Atten $=0 \%$, Lag $=0.4 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity= $10.04 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.5 \mathrm{~min}$
Avg. Velocity $=3.40 \mathrm{fps}$, Avg. Travel Time $=1.5 \mathrm{~min}$
Peak Storage= 2,230 cf @ 12.20 hrs
Average Depth at Peak Storage= 0.45'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,139.83 cfs
$15.00^{\prime} \times 3.00$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=300.0' Slope= 0.1800 '/'
Inlet Invert= -2.00', Outlet Invert= -56.00'

Summary for Reach 4DC2: 4 Downchute 2\%

Inflow Area $=$	22.714 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-Y e a r, 24-$ Hour event	
Inflow	$=$	$74.80 \mathrm{cfs} @$	12.19 hrs , Volume $=$
Outflow	$=$	$74.82 \mathrm{cfs} @$	12.19 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.92 \mathrm{fps}$, Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=1.69 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 1,140 cf @ 12.19 hrs
Average Depth at Peak Storage $=0.86$ '
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length= 75.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= $\mathbf{- 3 . 5 0}{ }^{\prime}$

Summary for Pond 1ULT: 1 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 2.92' @ 12.22 hrs Surf.Area= 3,142 sf Storage= 3,873 cf
Plug-Flow detention time $=5.1 \mathrm{~min}$ calculated for 0.719 af (100% of inflow)
Center-of-Mass det. time $=5.1 \mathrm{~min}(774.9-769.8)$

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 of Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=\mathbf{3 . 2 8}$) Head (feet) 0.000 .70
\#2			Width (feet) 38.0042 .90
	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / 1 \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=4.50 cfs @ 12.22 hrs HW=2.92' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{2 = C u l v e r t}$ (Inlet Controls 4.50 cfs @ 5.92 fps)

Summary for Pond 1URT: 1 Upper Right Terrace

Inflow Area $=$	1.280 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow $=$	$9.44 \mathrm{cfs} @$	12.07 hrs, Volume $=$	0.709 af	
Outflow $=$	$4.47 \mathrm{cfs} @$	12.22 hrs, Volume $=$	0.709 af , Atten=53\%, Lag= 8.7 min	
Primary $=$	$4.47 \mathrm{cfs} @$	12.22 hrs, Volume $=$	0.709 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=2.89' @ 12.22 hrs Surf.Area=3,098 sf Storage=3,779 of
Plug-Flow detention time $=5.0 \mathrm{~min}$ calculated for 0.709 af (100% of inflow)
Center-of-Mass det. time $=5.0 \mathrm{~min}$ (774.8 - 769.8)

Primary OutFlow Max=4.47 cfs @ 12.22 hrs HW=2.89' (Free Discharge)

- $1=$ Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 4.47 cfs @ 5.88 fps)

Summary for Pond 2LLT: 2 Lower Left Terrace

Inflow Area $=$	2.326 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$9.58 \mathrm{cfs} @$	12.08 hrs , Volume $=$	1.288 af
Outflow	$=$	$5.18 \mathrm{cfs} @$	12.58 hrs , Volume=	1.288 af , Atten $=46 \%$, Lag $=29.8 \mathrm{~min}$
Primary	$=$	$5.18 \mathrm{cfs} @$	12.58 hrs , Volume=	1.288 af

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=3.71' @ 12.58 hrs Surf.Area= $4,569 \mathrm{sf}$ Storage $=6,933 \mathrm{cf}$
Plug-Flow detention time $=9.0 \mathrm{~min}$ calculated for 1.288 af (100% of inflow)
Center-of-Mass det. time $=9.0 \mathrm{~min}(783.6-774.5)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\circ}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad S=0.0200 \quad / / \quad C c=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.18 cfs @ 12.58 hrs HW=3.71' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{2 = C u l v e r t}$ (Inlet Controls 5.18 cfs @ 6.82 fps)

Summary for Pond 2LRT: 2 Lower Right Terrace

Inflow Area $=$	2.279 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event
Inflow	$=$	$9.44 \mathrm{cfs} @$	12.08 hrs , Volume
Outflow	$=$	$5.15 \mathrm{cfs} @$	12.57 hrs , Volume $=$
Primary	$=$	$5.15 \mathrm{cfs} @$	12.57 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.67' @ 12.57 hrs Surf.Area=4,492 sf Storage=6,742 cf
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 1.263 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}(783.2-774.4)$

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 13

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$ Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \quad / /{ }^{\prime} \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.15 cfs @ 12.57 hrs HW=3.67' (Free Discharge)
[-1=Custom Weir/Orifice (Controls 0.00 cfs)
2=Culvert (Inlet Controls $5.15 \mathrm{cfs} @ 6.78 \mathrm{fps}$)

Summary for Pond 2ULT: 2 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=3.44' @ 12.26 hrs Surf.Area= 4,062 sf Storage= 5,738 cf
Plug-Flow detention time $=6.8 \mathrm{~min}$ calculated for 0.903 af (100% of inflow)
Center-of-Mass det. time $=6.7 \mathrm{~min}(776.6-769.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015 HydroCAD(8) $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 14

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv=2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

-1=Custom Weir/Orifice (Controls 0.00 cfs) 2=Culvert (Inlet Controls 4.96 cfs @ 6.52 fps)											

Summary for Pond 2URT: 2 Upper Right Terrace

Inflow Area $=$	1.598 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$11.79 \mathrm{cfs} @$	12.07 hrs, Volume $=$	0.885 af
Outflow	$=$	$4.91 \mathrm{cfs} @$	12.26 hrs, Volume $=$	0.885 af , Atten=
Primary	$=$	$4.91 \mathrm{cfs} @$	12.26 hrs , Volume $=$	0.885 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.39^{\prime} @ 12.26 hrs Surf.Area= 3,974 sf Storage $=5,544$ cf
Plug-Flow detention time $=6.6 \mathrm{~min}$ calculated for 0.885 af (100% of inflow)
Center-of-Mass det. time $=6.6 \mathrm{~min}(776.4-769.8)$

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
$\begin{array}{r} \begin{array}{r} \text { Elevation } \\ \text { (feet) } \end{array} \\ \hline \end{array}$	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{I} / \mathrm{l}^{\prime} \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=4.91 cfs @ 12.26 hrs HW=3.39' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
2=Culvert (Inlet Controls 4.91 cfs @ 6.47 fps)

Summary for Pond 3LLT: 3 Lower Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.15' @ 12.16 hrs Surf.Area= 5,412 sf Storage= 9,095 cf
Plug-Flow detention time $=10.0 \mathrm{~min}$ calculated for 1.880 af (100% of inflow)
Center-of-Mass det. time= $10.0 \mathrm{~min}(783.9-773.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 0.00' $/-0.60 ' \mathrm{~S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=12.78 cfs @ 12.16 hrs HW=4.15' (Free Discharge)
—1=Custom Weir/Orifice (Weir Controls 7.26 cfs @ 1.26 fps)
—2=Culvert (Inlet Controls 5.52 cfs @ 7.27 fps)

Summary for Pond 3LRT: 3 Lower Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 4.14' @ 12.17 hrs Surf.Area= 5,394 sf Storage= 9,050 of
Plug-Flow detention time $=10.0 \mathrm{~min}$ calculated for 1.838 af (100% of inflow)
Center-of-Mass det. time= 10.0 min (783.8-773.7)

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 16

Volume	Invert Av	vail.Storage Stor	escription
\#1	0.00'	12,399 cf Custom Stage Data (Pri	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00		00	0
0.10	41	412	2
1.00	716	6 341	343
2.00	1,803	1,260	1,602
3.00	3,261	1 2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	2 4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

[^1]
Summary for Pond 3ULT: 3 Upper Left Terrace

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= 0.00 '/-0.60' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.15 cfs @ 12.29 hrs HW=3.67' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{- 2 = C u l v e r t ~ (I n l e t ~ C o n t r o l s ~} 5.15 \mathrm{cfs} @ 6.78 \mathrm{fps}$)

Summary for Pond 3URT: 3 Upper Right Terrace

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$
\#2			Width (feet) 38.0042 .90
	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / \prime \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.11 cfs @ 12.28 hrs HW=3.62' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{2 = C u l v e r t}$ (Inlet Controls 5.11 cfs @ 6.73 fps)

Summary for Pond 4LLT: 4 Lower Left Terrace

Primary OutFlow Max=16.64 cfs @ 12.19 hrs HW=4.20' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 11.08 cfs @ 1.45 fps)
-2=Culvert (Inlet Controls 5.56 cfs @ 7.32 fps)

Summary for Pond 4LRT: 4 Lower Right Terrace

Inflow Area $=$	4.357 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$20.86 \mathrm{cfs} @$	12.12 hrs, Volume $=$	2.414 af
Oufflow	$=$	$15.69 \mathrm{cfs} @$	12.20 hrs , Volume $=$	2.414 af , Atten= 25%, Lag= 4.9 min
Primary	$=$	$15.69 \mathrm{cfs} @$	12.20 hrs , Volume $=$	2.414 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.19' @ 12.20 hrs Surf.Area= 5,490 sf Storage= 9,295 cf
Plug-Flow detention time $=11.0 \mathrm{~min}$ calculated for 2.414 af (100% of inflow)
Center-of-Mass det. time $=11.0 \mathrm{~min}(792.0-781.0)$

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 19

Primary OutFlow Max=15.65 cfs @ 12.20 hrs HW=4.19' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 10.10 cfs @ 1.41 fps)
$\square_{\mathbf{2}=C u l v e r t ~(I n l e t ~ C o n t r o l s ~} 5.55$ cfs @ 7.31 fps)

Summary for Pond 4MLT: 4 Middle Left Terrace

Inflow Area $=$	3.767 ac,	0.00%	Impervious, Inflow Depth $=$	$6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$19.16 \mathrm{cfs} @$	12.08 hrs, Volume=	2.087 af	
Outflow	$=$	$17.34 \mathrm{cfs} @$	12.12 hrs, Volume=	2.087 af, Atten= 9%, Lag= 2.6 min	
Primary	$=$	$17.34 \mathrm{cfs} @$	12.12 hrs, Volume $=$	2.087 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.20 @ 12.12 hrs Surf.Area= 5,530 sf Storage $=9,398$ cf
Plug-Flow detention time $=9.6 \mathrm{~min}$ calculated for 2.087 af (100% of inflow)
Center-of-Mass det. time $=9.6 \min (783.1-773.4)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed A
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\& Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 20

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.20' @ 12.13 hrs Surf.Area=5,513 sf Storage= $9,353 \mathrm{cf}$
Plug-Flow detention time= 9.7 min calculated for 2.036 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(783.0-773.4)$

Primary OutFlow Max=16.53 cfs @ 12.13 hrs HW=4.20' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 10.97 cfs @ 1.45 fps)
-2=Culvert (Inlet Controls 5.56 cfs @ 7.32 fps)

Summary for Pond 4ULT: 4 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=3.67' @ 12.29 hrs Surf.Area=4,492 sf Storage=6,741 cf
Plug-Flow detention time $=7.6 \mathrm{~min}$ calculated for 0.993 af (100% of inflow)
Center-of-Mass det. time $=7.6 \mathrm{~min}$ (777.4 - 769.8)

Primary OutFlow Max=5.15 cfs @ 12.29 hrs HW=3.67' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
—2=Culvert (Inlet Controls 5.15 cfs @ 6.78 fps)

Summary for Pond 4URT: 4 Upper Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.62' @ 12.28 hrs Surf.Area= 4,400 sf Storage $=6,518$ cf
Plug-Flow detention time $=7.4 \mathrm{~min}$ calculated for 0.974 af (100% of inflow)
Center-of-Mass det. time $=7.4 \mathrm{~min}(777.2-769.8)$

Attachment III-C

 Appendix III-C. 4
HydroCAd Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Summary for Subcatchment 1LLS: 1 Lower Left Subcat

Runoff $=23.86$ cfs @ 12.22 hrs , Volume $=\quad 2.546 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN Description			
156,035		92			
		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.0	300	0.0600	0.36		Sheet Flow, $n=0.150 \text { ' } P 2=3.75 \prime$
2.8	284	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
16.8	584	Total			

Summary for Subcatchment 1LRS: 1 Lower Right Subcat

Runoff $=25.33 \mathrm{cfs} @ 12.22 \mathrm{hrs}$, Volume= $\quad 2.704 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN Description			
165,671		92			
165,671		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
14.0	300	0.0600	0.36		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75{ }^{\prime \prime}$
2.8	284	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
16.8	584	Total			

Summary for Subcatchment 1ULS: 1 Upper Left Subcat

Runoff $=\quad 6.58 \mathrm{cfs} @ 12.17 \mathrm{hrs}$, Volume= $\quad 0.646 \mathrm{af}$, Depth= $8.53{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

| | Area (sf) | CN |
| :--- | ---: | :--- | Description \quad.

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ @ 2011 HydroCAD Software Solutions LLC

Tc Length

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
13.4	284	0.0600	0.35		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment 1URS: 1 Upper Right Subcat

Runoff $=\quad 7.49 \mathrm{cfs} @ 12.18 \mathrm{hrs}$, Volume= $\quad 0.748 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN Description			
*	45,863	92			
45,863		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.0	300	0.0600	0.36		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75$
0.1	13	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
14.1	313	Total			

Summary for Subcatchment 2LLS: 2 Lower Left Subcat

Runoff $=14.72$ cfs @ 12.07 hrs, Volume $=1.121 \mathrm{af}$, Depth $=8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 2LRS: 2 Lower Right Subcat

Runoff $=\quad 14.73$ cfs @ 12.07 hrs, Volume= $\quad 1.122$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Watershed B

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 3

Summary for Subcatchment 2ULS: 2 Upper Left Subcat

Runoff $=16.54$ cfs @ 12.07 hrs , Volume= $\quad 1.259$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100 -Year, 24 -Hour Rainfall $=9.50^{\prime \prime}$

Summary for Subcatchment 2URS: 2 Upper Right Subcat

Runoff $=16.15$ cfs @ 12.07 hrs , Volume= $\quad 1.230 \mathrm{af}$, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 3LLS: 3 Lower Left Subcat

Runoff $=14.74$ cfs @ 12.07 hrs, Volume= $\quad 1.123$ af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall=9.50"

	ea (sf)	CN Description			
	68,795	92			
68,795		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow,

Summary for Subcatchment 3LRS: 3 Lower Right Subcat

Runoff $=\quad 14.75 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume= $\quad 1.123 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
68,813	92		
		100.00% Pervious Area	

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | Description,$~$| Sheet Flow, |
| :--- |
| $\mathrm{n}=0.150 \quad$ P2 $=3.75$ |

Summary for Subcatchment 3ULS: 3 Upper Left Subcat

Runoff $=14.75$ cfs @ 12.07 hrs, Volume= 1.124 af, Depth= $8.53{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf) CN Description					
*	68,849	92			
68,849		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 3URS: 3 Upper Right Subcat

Runoff $=\quad 14.76$ cfs @ 12.07 hrs , Volume= $\quad 1.124$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® 10.00 s/n 04891 © 2011 HydroCAD Software Solutions LLC
Page 5

Summary for Subcatchment 4LLS: 4 Lower Left Subcat

Runoff $=\quad 14.77$ cfs @ 12.07 hrs, Volume= 1.125 af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Summary for Subcatchment 4LRS: 4 Lower Right Subcat

Runoff $=14.67$ cfs @ 12.07 hrs, Volume= $\quad 1.117$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 4ULS: 4 Upper Left Subcat
Runoff = 14.75 cfs @ 12.07 hrs, Volume= 1.123 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

| | Area (sf) | CN |
| ---: | ---: | :--- | Description \quad.

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow $n=0.150$

Summary for Subcatchment 4URS: 4 Upper Right Subcat

Runoff $=14.68$ cfs @ 12.07 hrs, Volume= $\quad 1.118 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 5LLS: 5 Lower Left Subcat

Runoff $=14.79$ cfs @ 12.07 hrs, Volume= $\quad 1.127$ af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 5LRS: 5 Lower Right Subcat

Runoff $=14.65$ cfs @ 12.07 hrs, Volume= $\quad 1.115$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 5ULS: 5 Upper Left Subcat

Runoff $=14.74$ cfs @ 12.07 hrs, Volume $=1.123$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 5URS: 5 Upper Right Subcat

Runoff $=14.67$ cfs @ 12.07 hrs, Volume $=1.117$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24 -Hour Rainfall $=9.50$ "

	rea (sf)	CN Description			
*	68,437	92			
68,437		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75$

Summary for Subcatchment 6LLS: 6 Lower Left Subcat
Runoff $=14.82$ cfs @ 12.07 hrs, Volume= $\quad 1.128$ af, Depth $=8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 8

Area (sf) CN Description					
	69,136	92			
69,136		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \quad P 2=3.75^{\prime \prime}$

Summary for Subcatchment 6LRS: 6 Lower Right Subcat

Runoff $=14.54$ cfs @ 12.07 hrs, Volume= $\quad 1.107$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 6ULS: 6 Upper Left Subcat

Runoff $=14.74$ cfs @ 12.07 hrs, Volume $=1.123 \mathrm{af}$, Depth= $8.53{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment 6URS: 6 Upper Right Subcat

Runoff = 14.66 cfs @ 12.07 hrs, Volume= 1.117 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24 -Hour Rainfall $=9.50$ "

Watershed B

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® 10.00 s/n 04891 © 2011 HydroCAD Software Solutions LLC
Page 9

Area (sf)		CN Description			
*	68,428	92			
68,428		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Reach 1DC: 1 Downchute

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 10.10 fps , Min. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.99 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 886 cf @ 12.24 hrs
Average Depth at Peak Storage= 0.35^{\prime}
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= $2,521.82$ cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length $=157.0^{\prime}$ Slope $=0.2500 \mathrm{l} / \mathrm{\prime}$
Inlet Invert= -2.00', Outlet Invert=-41.25'

Summary for Reach 1DC2: 1 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.49 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 610 cf @ 12.24 hrs
Average Depth at Peak Storage $=0.74{ }^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 10
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00 '
Length=48.0' Slope $=0.0200^{\prime \prime} /$
Inlet Invert= -2.00', Outlet Invert= $\mathbf{- 2 . 9 6}$

Summary for Reach 2DC: 2 Downchute

Inflow Area $=$	16.003 ac,	0.00% Impervious, Inflow Depth $=8.53 \mathrm{ln}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$87.54 \mathrm{cfs} @$	12.22 hrs , Volume $=$	11.376 af
Outflow	$=$	$87.54 \mathrm{cfs} @$	12.22 hrs , Volume $=$	11.376 af , Atten $=0 \%$, Lag $=0.1 \mathrm{~min}$

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 11.81 fps, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=3.59 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 1,164 cf @ 12.22 hrs
Average Depth at Peak Storage= 0.45 '
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= $2,521.82 \mathrm{cfs}$
15.00 ' x 3.00' deep channel, $n=0.035$

Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length= 157.0^{\prime} Slope $=0.2500 \mathrm{I} /$ '
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 2DC2: 2 Downchute 2\%
Inflow Area $=16.003 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53$ " for 100-Year, 24 -Hour event Inflow = 87.54 cfs @ 12.22 hrs, Volume= 11.376 af
Outflow = 87.54 cfs @ 12.22 hrs , Volume $=11.376 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.19 fps , Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.60 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 809 cf @ 12.22 hrs
Average Depth at Peak Storage $=0.95^{\prime}$
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 11
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.01 ' $/$ Top Width= 33.00^{\prime}
Length $=48.0$ ' Slope $=0.0200$ '/
Inlet Invert= -2.00^{\prime}, Outlet Invert= $\mathbf{- 2 . 9 6}$ '

Summary for Reach 3DC: 3 Downchute

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $12.96 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.04 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 1,372 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.53'
Bank-Full Depth $=3.00^{\prime}$ Flow Area= 72.0 sf, Capacity $=2,521.82$ cfs
$15.00^{\prime} \times 3.00$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=157.0' Slope= 0.2500 '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 3DC2: 3 Downchute 2\%
Inflow Area $=\quad 22.324$ ac, 0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100 -Year, 24 -Hour event Inflow = 113.29 cfs @ 12.14 hrs, Volume= 15.870 af Outflow = $113.31 \mathrm{cfs} @ 12.14 \mathrm{hrs}$, Volume $=15.870 \mathrm{af}$, Atten= 0\%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=5.65 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.80 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 962 cf @ 12.14 hrs
Average Depth at Peak Storage=1.10'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length $=48.0^{\prime}$ Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 4DC: 4 Downchute

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=14.24 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.41 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 1,630 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.62 '
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=157.0' Slope $=0.2500$ '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 4DC2: 4 Downchute 2\%
Inflow Area $=28.630$ ac, 0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24-Hour event Inflow = 148.02 cfs @ 12.13 hrs, Volume $=20.353$ af Outflow = 147.92 cfs @ 12.14 hrs , Volume= 20.353 af , Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=6.16 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.97 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 1,152 cf @ 12.14 hrs
Average Depth at Peak Storage=1.27'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity $=713.28$ cfs

Watershed B

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 13
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=48.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 5DC: 5 Downchute

Inflow Area $=34.934$ ac, 0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow $=183.01$ cfs @ 12.13 hrs, Volume= 24.835 af Outflow = 182.89 cfs @ 12.14 hrs , Volume= 24.835 af , Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity= 15.33 fps , Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.73 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 1,872 cf @ 12.14 hrs
Average Depth at Peak Storage=0.70'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00$ ' deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length=157.0' Slope $=0.2500{ }^{\prime} / \prime$
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 5DC2: 5 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=6.60 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.12 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage $=1,332$ cf @ 12.13 hrs
Average Depth at Peak Storage=1.44'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=48.0' Slope $=0.0200^{\prime \prime} / \mathrm{\prime}$
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 6DC: 6 Downchute

Inflow Area $=$	41.229 ac,	0.00% Impervious, Inflow Depth $=8.53 "$	for $100-$ Year, 24 -Hour event	
Inflow	$=$	$218.11 \mathrm{cfs} @$	12.13 hrs, Volume $=$	29.310 af
Outflow	$=$	$217.89 \mathrm{cfs} @$	12.14 hrs , Volume $=$	29.310 af , Atten $=0 \%$, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=16.29 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=5.02 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 2,808 cf @ 12.14 hrs
Average Depth at Peak Storage=0.77'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length $=210.0$ ' Slope $=0.2500$ '/'
Inlet Invert= -2.00', Outlet Invert= -54.50'

Summary for Reach 6DC2: 6 Downchute 2\%

Inflow Area $=41.229 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event
Inflow $=218.09$ cfs @ 12.13 hrs , Volume= 29.310 af
Outflow $=218.11$ cfs @ 12.13 hrs , Volume $=29.310 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min
Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 6.97 fps , Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.24 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage $=1,502$ cf @ 12.13 hrs
Average Depth at Peak Storage $=1.58$ '
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length= 48.0' Slope= 0.0200 '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Pond 1LLT: 1 Lower Left Terrace

Inflow Area =	4.490 ac ,	0.00\% Impervious,	flow Depth $=8.53^{\prime \prime}$ for 100-Year, 24-Hour event
Inflow	27.78 cfs @	12.23 hrs , Volume=	3.192 af
Outflow	27.65 cfs @	12.24 hrs , Volume=	3.192 af, Atten= 0\%, Lag= 0.8 min
Primary	27.65 cfs @	12.24 hrs, Volume=	3.192 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 4.31' @ 12.24 hrs Surf.Area= 5,756 sf Storage= 9,991 cf
Plug-Flow detention time $=7.8 \mathrm{~min}$ calculated for 3.192 af (100% of inflow)
Center-of-Mass det. time $=7.8 \mathrm{~min}(782.7-774.9)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=27.59 cfs @ 12.24 hrs HW=4.31' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 21.95 cfs @ 1.81 fps)
—2=Culvert (Inlet Controls 5.64 cfs @ 7.43 fps)

Summary for Pond 1LRT: 1 Lower Right Terrace

Summary for Pond 1ULT: 1 Upper Left Terrace

Inflow Area $=$	0.908 ac,	0.00%	Impervious, Inflow Depth $=8.53 "$	for 100-Year, $24-$ Hour event
Inflow	$=$	$6.58 \mathrm{cfs} @$	12.17 hrs, Volume $=$	0.646 af
Outflow $=$	$4.12 \mathrm{css} @$	12.35 hrs, Volume $=$	0.646 af , Atten= 37%, Lag= 10.7 min	
Primary $=$	$4.12 \mathrm{cfs} @$	12.35 hrs, Volume $=$	0.646 af	

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 2.53' @ 12.35 hrs Surf.Area=2,573 sf Storage $=2,758$ of
Plug-Flow detention time $=4.1 \mathrm{~min}$ calculated for 0.645 af (100% of inflow)
Center-of-Mass det. time $=4.1 \mathrm{~min}(775.7-771.5)$

Summary for Pond 1URT: 1 Upper Right Terrace

Inflow Area $=$	1.053 ac,	0.00% Impervious, Inflow Depth $=8.53 "$	for $100-$ Year, $24-$ Hour event	
Inflow $=$	$7.49 \mathrm{cfs} @$	12.18 hrs, Volume $=$	0.748 af	
Outflow $=$	$4.42 \mathrm{css} @$	12.39 hrs, Volume $=$	0.748 af , Atten= 41%, Lag= 12.4 min	
Primary $=$	$4.42 \mathrm{cfs} @$	12.39 hrs, Volume $=$	0.748 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=2.84' @ 12.39 hrs Surf.Area=3,023 sf Storage $=3,621 \mathrm{cf}$
Plug-Flow detention time $=4.9 \mathrm{~min}$ calculated for 0.748 af (100% of inflow)
Center-of-Mass det. time $=4.9 \mathrm{~min}$ (777.1-772.2)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC Page 18

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.22' @ 12.11 hrs Surf.Area= $5,560 \mathrm{sf}$ Storage= $9,474 \mathrm{cf}$
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.381 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(778.4-768.7)$

Summary for Pond 2LRT: 2 Lower Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.22' @ 12.11 hrs Surf.Area= 5,558 sf Storage= 9,469 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.351 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(778.3-768.7$)

Primary OutFlow Max=18.37 cfs @ 12.11 hrs HW=4.22' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 12.80 cfs @ 1.52 fps)
—2=Culvert (Inlet Controls 5.57 cfs @ 7.34 fps)

Summary for Pond 2ULT: 2 Upper Left Terrace

Inflow Area $=$	1.772 ac,	0.00% Impervious, Inflow Depth $=8.53 "$	for $100-$ Year, 24 -Hour event
Inflow	$=$	$16.54 \mathrm{cfs} @$	12.07 hrs, Volume $=$
Outflow	$=$	$8.70 \mathrm{cfs} @$	12.19 hrs , Volume $=$
Primary	$=$	$8.70 \mathrm{cfs} @$	12.19 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 4.09' @ 12.19 hrs Surf.Area=5,277 sf Storage= 8,761 cf
Plug-Flow detention time $=8.8 \mathrm{~min}$ calculated for 1.259 af (100% of inflow)
Center-of-Mass det. time $=8.8 \mathrm{~min}(772.9-764.0)$

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Primary OutFlow Max=8.66 cfs @ 12.19 hrs HW=4.09' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $3.18 \mathrm{cfs} @ 0.96 \mathrm{fps}$)
2=Culvert (Inlet Controls 5.47 cfs @ 7.21 fps)

Summary for Pond 2URT: 2 Upper Right Terrace

Inflow	1.730	0.00\% Impervious, Inflow Depth $=8.53 "$		" for 100-Year, 24-Hour
Inflow	16.15 cfs @	12.07 hrs , Volume=	1.230 af	
Outflow	7.92 cfs @	12.21 hrs , Volume=	1.230 af, At	tten= 51%, Lag $=8.2 \mathrm{~min}$
Primary	7.92 cfs @	12.21 hrs , Volume=	1.230 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.07' @ 12.21 hrs Surf.Area= 5,243 sf Storage= 8,676 cf
Plug-Flow detention time $=8.9 \mathrm{~min}$ calculated for 1.230 af (100% of inflow)
Center-of-Mass det. time $=8.9$ min (772.9-764.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices		
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)		
			Head (feet) 0.000 .70		
			Width (feet) 38.0042 .90		
\#2	Primary	0.00'	11.8" Round Culvert		
			$\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert $=0.00^{\prime} / /-0.60 ' S=0.0200 ' / / \quad \mathrm{Cc}=0.900$		
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$		
Primary OutFlow Max=7.82 cfs @ 12.21 hrs HW=4.07' (Free Discharge) -1=Custom Weir/Orifice (Weir Controls $2.36 \mathrm{cfs} @ 0.87 \mathrm{fps}$) 2=Culvert (Inlet Controls 5.46 cfs @ 7.19 fps)					

Summary for Pond 3LLT: 3 Lower Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.12 hrs Surf.Area= 5,549 sf Storage= 9,447 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.246 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}$ (778.1-768.4)

Volume	Invert Avail	I.Storage Stora	ge Storage Description
\#1	0.00'	12,399 cf Cust	tage Data (P
Elevation (feet)	Surf.Area (sq -ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathbf{C = 3 . 2 8)}$ Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=0.00' $/-0.60 ' \mathrm{~S}=0.0200$ '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=18.01 cfs @ 12.12 hrs HW=4.21' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 12.44 cfs @ 1.51 fps)
-2=Culvert (Inlet Controls 5.57 cfs @ 7.33 fps)

Summary for Pond 3LRT: 3 Lower Right Terrace

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Peak Elev=4.19' @ 12.13 hrs Surf.Area= 5,495 sf Storage $=9,308 \mathrm{cf}$

Plug-Flow detention time $=10.7 \mathrm{~min}$ calculated for 2.247 af (100% of inflow)
Center-of-Mass det. time $=10.7 \mathrm{~min}(784.6-773.9)$

Volume	Invert Avail	il.Storage Stora	escription
\#1	0.00'	12,399 cf Custom Stage Data (Prismatic)Listed below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70
\#2	Primary		Width (feet) 38.0042 .90
		0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=15.86 cfs @ 12.13 hrs HW=4.19' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 10.31 cfs @ 1.42 fps)
-2=Culvert (Inlet Controls 5.55 cfs @ 7.31 fps)

Summary for Pond 3ULT: 3 Upper Left Terrace

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Peak Elev=3.96' @ 12.31 hrs Surf.Area= 5,022 sf Storage $=8,118$ of
Plug-Flow detention time $=8.7 \mathrm{~min}$ calculated for 1.123 af (100% of inflow)
Center-of-Mass det. time $=8.7 \mathrm{~min}(772.7-764.0)$

Watershed B

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 23

| Volume | Invert | Avail.Storage | Storage Description |
| ---: | ---: | ---: | ---: | ---: |
| $\# 1$ | 0.00^{\prime} | $12,399 \mathrm{cf}$ | Custom Stage Data (Pr |
| Elevation | Surf.Area
 (sq-ft) | Inc.Store
 (cubic-feet) | Cum.Store
 (cubic-feet) |
| 0.00 | 0 | 0 | 0 |
| 0.10 | 41 | 2 | 2 |
| 1.00 | 716 | 341 | 343 |
| 2.00 | 1,803 | 1,260 | 1,602 |
| 3.00 | 3,261 | 2,532 | 4,134 |
| 4.00 | 5,091 | 4,176 | 8,310 |
| 4.70 | 6,592 | 4,089 | 12,399 |

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=0.00'/-0.60' S=0.0200 '/' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.38 cfs @ 12.31 hrs HW=3.96' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{- 2 = C u l v e r t ~ (I n l e t ~ C o n t r o l s ~} 5.38 \mathrm{cfs} @ 7.08 \mathrm{fps}$)

Summary for Pond 3URT: 3 Upper Right Terrace

Inflow Area $=$	1.582 ac,	0.00% Impervious, Inflow Depth $=8.53 "$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$14.76 \mathrm{cfs} @$	12.07 hrs , Volume $=$
Outflow	$=$	$4.29 \mathrm{cfs} @$	12.39 hrs , Volume $=$
Primary	$=$	$4.29 \mathrm{cfs} @$	12.39 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=2.70' @ 12.39 hrs Surf.Area= 8,234 sf Storage= 11,110 cf
Plug-Flow detention time $=19.8 \mathrm{~min}$ calculated for 1.124 af (100% of inflow)
Center-of-Mass det. time $=19.8 \mathrm{~min}(783.8-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$33,704 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
4.70	14,342	33,704	33,704

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	4.00 '	Custom Weir/Orifice, Cv= 2.62 (C= 3.28)
		Head (feet) 0.000 .70	
		Width (feet) 38.0042 .90	

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 24

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.11 hrs Surf.Area=5,550 sf Storage= 9,450 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.247 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(778.1-768.4)$

[^2]
Summary for Pond 4LRT: 4 Lower Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.12 hrs Surf.Area= 5,546 sf Storage= $9,439 \mathrm{cf}$
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.235 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(778.1$ - 768.3 $)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00^{\prime}	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=\mathbf{3 . 2 8}$) Head (feet) $0.00 \quad 0.70$
\#2			Width (feet) 38.0042 .90
	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} / /-0.60{ }^{\prime} \mathrm{S}=0.0200 \%$ Cc= $/ 1.900$
			$\mathrm{n}=0.012$, Flow Area= 0.76 sf

Primary OutFlow Max=17.89 cfs @ 12.12 hrs HW=4.21' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 12.32 cfs @ 1.50 fps)
—2=Culvert (Inlet Controls $5.57 \mathrm{cfs} @ 7.33 \mathrm{fps}$)

Summary for Pond 4ULT: 4 Upper Left Terrace

Routing by Stor-Ind method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=3.96' @ 12.31 hrs Surf.Area= 5,021 sf Storage= 8,116 cf
Plug-Flow detention time $=8.7$ min calculated for 1.123 af (100% of inflow)
Center-of-Mass det. time $=8.7 \mathrm{~min}$ (772.7 -764.0)

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 26

Volume	Invert Avail	vail.Storage Storage Description	
\#1	0.00'	99 cf Cust	tage Data (Pr
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad S=0.0200 \% \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.38 cfs @ 12.31 hrs HW=3.96' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
—2=Culvert (Inlet Controls $5.38 \mathrm{cfs} @ 7.08 \mathrm{fps}$)

Summary for Pond 4URT: 4 Upper Right Terrace

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 27

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$
$\begin{aligned} & \text { Primary } \\ & E_{1}=C l \\ & 2=C \end{aligned}$	OutFlow stom We vert (Inl	37 cfs (Con 5.37	12.31 hrs HW=3.95' (Free Discharge) ols 0.00 cfs) cfs @ 7.07 fps)

Summary for Pond 5LLT: 5 Lower Left Terrace

Routing by Stor-Ind method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.11 hrs Surf.Area=5,551 sf Storage=9,452 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.249 af (100% of inflow)
Center-of-Mass det. time $=9.7$ min (778.1-768.4)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv=2.62 (C=3.28) Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert $=0.00{ }^{\prime} /-0.60 ' S=0.0200 ~ / / ' C c=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=18.08 cfs @ 12.11 hrs HW=4.21' (Free Discharge)

- $1=$ Custom Weir/Orifice (Weir Controls 12.51 cfs @ 1.51 fps)
-2=Culvert (Inlet Controls 5.57 cfs @ 7.33 fps)

Summary for Pond 5LRT: 5 Lower Right Terrace

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	$\begin{aligned} & \text { Custom Weir/Orifice, } \mathbf{C v}=2.62 \text { (} \mathrm{C}=\mathbf{3 . 2 8} \text {) } \\ & \text { Head (feet) } 0.000 .70 \\ & \text { Width (feet) } 38.0042 .90 \end{aligned}$
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\circ}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{l} \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$
$\begin{array}{r} \text { Primar } \\ -1=C \\ 2=C \end{array}$	OutFlow stom We vert (Inl	.85 cfs (Weir ls 5.57	@ 12.12 hrs HW=4.21' (Free Discharge) Controls 12.28 cfs @ 1.50 fps) cfs @ 7.33 fps)

Summary for Pond 5ULT: 5 Upper Left Terrace

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Peak Elev=3.96' @ 12.31 hrs Surf.Area=5,018 sf Storage=8,108 cf

Plug-Flow detention time $=8.7$ min calculated for 1.122 af (100% of inflow)
Center-of-Mass det. time $=8.7 \mathrm{~min}(772.7-764.0)$

Watershed B
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 29

Volume	Invert Av	vail.Storage Stor	escription
\#1	0.00'	12,399 cf Custo	Custom Stage Data (Pr
$\begin{array}{r}\begin{array}{r}\text { Elevation } \\ \text { (feet) }\end{array} \\ \hline \text { 俗 }\end{array}$	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00		00	0
0.10	41	41	2
1.00	716	6 131	343
2.00	1,803	1,260	1,602
3.00	3,261	1 2,532	4,134
4.00	5,091	1 4,176	8,310
4.70	6,592	2 4,089	12,399

Primary OutFlow Max=5.38 cfs @ 12.31 hrs HW=3.96' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{2 = C u l v e r t}$ (Inlet Controls $5.38 \mathrm{cfs} @ 7.08 \mathrm{fps}$)

Summary for Pond 5URT: 5 Upper Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=3.95' @ 12.31 hrs Surf.Area= 4,992 sf Storage $=8,038$ cf
Plug-Flow detention time $=8.6 \mathrm{~min}$ calculated for 1.117 af (100% of inflow)
Center-of-Mass det. time $=8.6 \mathrm{~min}(772.7-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices		
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)		
			Head (feet) 0.000 .70		
			Width (feet) 38.0042 .90		
\#2	Primary	0.00'	11.8" Round Culvert		
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$		
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 ' / / \quad \mathrm{Cc}=0.900$		
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$		
$\begin{aligned} & \text { Primary OutFlow Max=5.37 cfs @ } 12.31 \mathrm{hrs} \mathrm{HW=3.95'} \mathrm{(Free} \mathrm{Discharge)} \\ & \text { - } 1=\text { Custom Weir/Orifice (Controls } 0.00 \mathrm{cfs} \text {) } \\ & 2=\text { Culvert (Inlet Controls } 5.37 \mathrm{cfs} @ 7.06 \mathrm{fps} \text {) } \end{aligned}$					

Summary for Pond 6LLT: 6 Lower Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.11 hrs Surf.Area= 5,552 sf Storage= 9,454 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.250 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}$ (778.1-768.4)

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \\ \hline \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 \mathrm{\prime} / \mathrm{l}$ Cc= $=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=18.11 cfs @ 12.11 hrs HW=4.21' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 12.54 cfs @ 1.51 fps)
-2=Culvert (Inlet Controls 5.57 cfs @ 7.33 fps)

Summary for Pond 6LRT: 6 Lower RightTerrace

Inflow Area =	3.128 ac	0.00\% Impervious, In	Inflow Depth = 8.53" for 100-Year, 24 -Hour event
Inflow	19.33 cfs @	12.08 hrs , Volume=	- 2.224 af
Outflow	17.80 cfs @	12.12 hrs , Volume=	2.224 af, Atten= 8\%, Lag= 2.4 min
Primary	17.80 cfs @	12.12 hrs , Volume=	- 2.224 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.21' @ 12.12 hrs Surf.Area= 5,542 sf Storage= 9,427 cf
Plug-Flow detention time $=9.7 \mathrm{~min}$ calculated for 2.223 af (100% of inflow)
Center-of-Mass det. time $=9.7 \mathrm{~min}(778.1-768.4)$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=3.96' @ 12.31 hrs Surf.Area=5,018 sf Storage= 8,107 cf
Plug-Flow detention time $=8.7 \mathrm{~min}$ calculated for 1.122 af (100% of inflow)
Center-of-Mass det. time $=8.7 \mathrm{~min}$ (772.7 -764.0)

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	$\begin{array}{r} \text { Surf.Area } \\ (\mathrm{sq}-\mathrm{ft}) \end{array}$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=0.00'/-0.60' S = 0.0200 $/ / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76$ sf

Primary OutFlow Max=5.38 cfs @ 12.31 hrs HW=3.96' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{2}=$ Culvert (Inlet Controls $5.38 \mathrm{cfs} @ 7.08 \mathrm{fps}$)

Summary for Pond 6URT: 6 Upper Right Terrace

Routing by Stor-Ind method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.95' @ 12.31 hrs Surf.Area=4,991 sf Storage=8,036 cf
Plug-Flow detention time $=8.6$ min calculated for 1.116 af (100% of inflow)
Center-of-Mass det. time $=8.6 \mathrm{~min}(772.7-764.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0{ }^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60{ }^{\prime} \mathrm{S}=0.0200 \mathrm{\prime} / \mathrm{l}$ Cc= $=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.37 cfs @ 12.31 hrs HW=3.95' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$\mathbf{- 2 = C u l v e r t}$ (Inlet Controls 5.37 cfs @ 7.06 fps)

Technically Complete, March 11, 2016

Attachment III-C

ApPENDIX III-C. 4

HydroCAd Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Summary for Subcatchment 1LLS: 1 Lower Left Subcat
Runoff $=18.84$ cfs @ 12.22 hrs, Volume= $\quad 1.984$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	56,035	92			
156,035		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.0	300	0.0600	0.36		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
2.8	284	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
16.8	584	Total			

Summary for Subcatchment 1LRS: 1 Lower Right Subcat

Runoff $=\quad 20.00 \mathrm{cfs} @ 12.22$ hrs, Volume $=\quad 2.107$ af, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
13.4	284	0.0600	0.35		Sheet Flow

Summary for Subcatchment 1URS: 1 Upper Right Subcat

Runoff $=\quad 5.91 \mathrm{cfs}$ @ 12.18 hrs , Volume= $\quad 0.583 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
	45,863	92			
45,863		100.00\% Pervious Are			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
14.0	300	0.0600	0.36		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.1	13	0.0600	1.71		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
14.1	313	Total			

Summary for Subcatchment 2LLS: 2 Lower Left Subcat

Runoff $=11.63$ cfs @ 12.07 hrs, Volume $=0.874$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 2LRS: 2 Lower Right Subcat

Runoff = 11.64 cfs @ 12.07 hrs, Volume= 0.874 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Watershed B

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 3

Summary for Subcatchment 2ULS: 2 Upper Left Subcat

Runoff $=13.07$ cfs @ 12.07 hrs, Volume $=\quad 0.981$ af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	77,174	92			
77,174		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 2URS: 2 Upper Right Subcat

Runoff $=12.76$ cfs @ 12.07 hrs, Volume= 0.958 af, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 3LLS: 3 Lower Left Subcat

Runoff $=11.65$ cfs @ 12.07 hrs, Volume $=0.875 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 3LRS: 3 Lower Right Subcat

Runoff $=11.65$ cfs @ 12.07 hrs, Volume $=0.875$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 3ULS: 3 Upper Left Subcat
Runoff $=11.66$ cfs @ 12.07 hrs, Volume= 0.876 af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	68,849	92			
68,849		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 3URS: 3 Upper Right Subcat

Runoff $=11.66$ cfs @ 12.07 hrs, Volume $=\quad 0.876$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
68,891		92			
		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 4LLS: 4 Lower Left Subcat

Runoff $=11.67$ cfs @ 12.07 hrs, Volume $=\quad 0.876$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr $25-$ Year, 24 -Hour Rainfall $=7.60$ "

Summary for Subcatchment 4LRS: 4 Lower Right Subcat

Runoff $=11.59 \mathrm{cfs} @ 12.07$ hrs, Volume $=\quad 0.871$ af, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 4ULS: 4 Upper Left Subcat

Runoff $=11.65$ cfs @ 12.07 hrs, Volume= 0.875 af, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

| | Area (sf) | CN |
| :--- | ---: | :--- | Description \quad| \star | 68,836 | 92 |
| :--- | ---: | :--- |
| 68,836 | | 100.00% Pervious Area |

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity ($\mathrm{ft} / \mathrm{sec}$)	Capacity (cfs)	Description
5.3	179	0.2500			

$$
\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}
$$

Summary for Subcatchment 4URS: 4 Upper Right Subcat

Runoff $=\quad 11.59 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=\quad 0.871 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 5LLS: 5 Lower Left Subcat

Runoff $=11.69 \mathrm{cfs} @ 12.07$ hrs, Volume $=\quad 0.878$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
$\begin{array}{r}\text { * } \\ \hline 69,030 \\ \hline 69\end{array}$		92			
		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $\mathrm{n}=0.150$

Summary for Subcatchment 5LRS: 5 Lower Right Subcat
Runoff $=11.57$ cfs @ 12.07 hrs, Volume $=\quad 0.869$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Watershed B

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 7

Area (sf)		CN Description			
*	68,343	92			
68,343		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{t})$	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment 5ULS: 5 Upper Left Subcat

Runoff $=11.65$ cfs @ 12.07 hrs, Volume $=\quad 0.875$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 5URS: 5 Upper Right Subcat

Runoff $=11.59$ cfs @ 12.07 hrs, Volume= $\quad 0.870$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment 6LLS: 6 Lower Left Subcat
Runoff $=\quad 11.71$ cfs @ 12.07 hrs, Volume $=\quad 0.879$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
*	69,136	92	
	69,136		100.00\% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ftft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow

Summary for Subcatchment 6LRS: 6 Lower Right Subcat

Runoff $=\quad 11.49$ cfs @ 12.07 hrs, Volume= $\quad 0.863$ af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
*	67,849	92	
	67,849		100.00\% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment 6ULS: 6 Upper Left Subcat

Runoff $=11.65 \mathrm{cfs} @ 12.07 \mathrm{hrs}$, Volume $=0.875$ af, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
*	68,794	92			
68,794		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment 6URS: 6 Upper Right Subcat

Runoff $=\quad 11.59$ cfs @ 12.07 hrs, Volume= $\quad 0.870$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
*	68,428	92			
68,428		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
5.3	179	0.2500	0.57		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Reach 1DC: 1 Downchute

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=9.31 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.3 \mathrm{~min}$
Avg. Velocity $=2.79 \mathrm{fps}$, Avg. Travel Time $=0.9 \mathrm{~min}$
Peak Storage= 772 cf @ 12.25 hrs
Average Depth at Peak Storage= 0.31^{\prime}
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length= 157.0' Slope= 0.2500 '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 1DC2: 1 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.16 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.20 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 528 cf @ 12.24 hrs
Average Depth at Peak Storage $=0.65^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= $3.01 /{ }^{\prime}$ Top Width=33.00'
Length=48.0' Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96^{\prime}

Summary for Reach 2DC: 2 Downchute

Inflow Area $=$	16.003 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event		
Inflow	$=$	$67.33 \mathrm{cfs} @$	12.22 hrs , Volume $=$	8.865 af
Outflow	$=$	$67.32 \mathrm{cfs} @$	12.23 hrs , Volume $=$	8.865 af , Atten= 0%, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=10.73 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=3.32 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 985 cf @ 12.23 hrs
Average Depth at Peak Storage $=0.39^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length $=157.0^{\prime}$ Slope $=0.2500$ '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 2DC2: 2 Downchute 2\%

Inflow Area $=$	16.003 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$67.33 \mathrm{cfs} @$	12.22 hrs, Volume	8.865 af
Outflow	$=$	$67.33 \mathrm{cfs} @$	12.22 hrs , Volume=	8.865 af, Atten $=0 \%$, Lag $=0.1 \mathrm{~min}$

Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.75 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.47 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 680 cf @ 12.22 hrs
Average Depth at Peak Storage $=0.81$ '
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 11
$15.00^{\prime} \times 3.00$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 '/' Top Width=33.00'
Length=48.0' Slope= $0.0200{ }^{\prime \prime} /$
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 3DC: 3 Downchute

Inflow Area $=\quad 22.324$ ac, $\quad 0.00 \%$ Impervious, Inflow Depth $=6.65{ }^{\prime \prime}$ for 25-Year, 24 -Hour event Inflow $=87.59 \mathrm{cfs}$ @ 12.22 hrs, Volume $=12.367$ af Outflow = 87.59 cfs @ 12.22 hrs , Volume= 12.367 af , Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 11.81 fps , Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=3.72 \mathrm{fps}$, Avg. Travel Time $=0.7 \mathrm{~min}$
Peak Storage= 1,164 cf @ 12.22 hrs
Average Depth at Peak Storage= 0.45'
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00$ ' deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width=33.00'
Length=157.0' Slope= 0.2500 '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 3DC2: 3 Downchute 2\%

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= $5.19 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.65 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 810 cf @ 12.22 hrs
Average Depth at Peak Storage= 0.95 '
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 12
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=48.0' Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 4DC: 4 Downchute

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=12.81 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.06 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 1,344 cf @ 12.21 hrs
Average Depth at Peak Storage= 0.52^{\prime}
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=157.0' Slope= 0.2500 '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 4DC2: 4 Downchute 2\%

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=5.59 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.81 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 941 cf @ 12.21 hrs
Average Depth at Peak Storage $=1.08^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 13
$15.00^{\prime} \times 3.00$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length= 48.0 ' Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 5DC: 5 Downchute
Inflow Area $=34.934$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, $24-$ Hour event Inflow $=132.02$ cfs @ 12.20 hrs , Volume= 19.353 af Outflow $=131.97$ cfs @ 12.21 hrs, Volume $=19.353 \mathrm{af}$, Atten $=0 \%$, Lag= 0.1 min

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=13.68 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.35 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 1,514 cf @ 12.21 hrs
Average Depth at Peak Storage $=0.58$ '
Bank-Full Depth $=3.00^{\prime}$ Flow Area= 72.0 sf, Capacity $=2,521.82$ cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $n=0.035$
Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length= 157.0' Slope $=0.2500$ '/'
Inlet Invert= -2.00', Outlet Invert= -41.25'

Summary for Reach 5DC2: 5 Downchute 2\%

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.94 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=1.94 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 1,066 cf @ 12.20 hrs
Average Depth at Peak Storage=1.20'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs
$15.00^{\prime} \times 3.00^{\prime}$ deep channel, $\mathrm{n}=0.035$
Side Slope Z-value= 3.0 '/' Top Width= 33.00'
Length=48.0' Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Reach 6DC: 6 Downchute
Inflow Area = 41.229 ac , 0.00% Impervious, Inflow Depth $=6.65$ " for 25 -Year, 24 -Hour event
Inflow $=154.51 \mathrm{cfs}$ @ 12.20 hrs , Volume $=\quad 22.840$ af
Outflow = 154.42 cfs @ 12.21 hrs , Volume= 22.840 af , Atten= 0%, Lag= 0.1 min
Routing by Stor-Ind method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= $14.46 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=4.61 \mathrm{fps}$, Avg. Travel Time $=0.8 \mathrm{~min}$
Peak Storage= 2,243 cf @ 12.21 hrs
Average Depth at Peak Storage $=0.63^{\prime}$
Bank-Full Depth=3.00' Flow Area= 72.0 sf, Capacity= 2,521.82 cfs
15.00 x 3.00' deep channel, $n=0.035$

Side Slope Z-value= 3.0 ' /' Top Width= 33.00'
Length=210.0' Slope= 0.2500 '/'
Inlet Invert= -2.00', Outlet Invert= -54.50'

Summary for Reach 6DC2: 6 Downchute 2\%

Inflow Area	41.229 ac ,	0.00\% Impervious,	Depth $=6.65^{\prime \prime}$
Inflow	154.48 cfs @	12.20 hrs , Volume=	22.840 af
Outflow	154.51 cfs @	12.20 hrs , Volume=	22.840 af, Atten $=0 \%$, Lag $=0.1 \mathrm{~min}$

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=6.25 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.06 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 1,186 cf @ 12.20 hrs
Average Depth at Peak Storage=1.31'
Bank-Full Depth= 3.00' Flow Area= 72.0 sf, Capacity= 713.28 cfs

Watershed B

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 15
15.00 ' x 3.00' deep channel, $n=0.035$

Side Slope Z-value= 3.0 ' $/$ ' Top Width= 33.00'
Length=48.0' Slope $=0.0200$ '/'
Inlet Invert= -2.00', Outlet Invert= -2.96'

Summary for Pond 1LLT: 1 Lower Left Terrace

Inflow	4.490	0.00\% Impervious, Inflow Depth = 6.65" for 25-Year, $24-$ Hour event		
Inflow	22.33 cfs @	12.23 hrs , Volume=	2.487 af	
Outflow	22.19 cfs @	12.24 hrs , Volume=	2.487 af, A	Atten= 1\%, Lag= 0.9 min
Primary	22.19 cfs @	12.24 hrs , Volume=	2.487 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.26' @ 12.24 hrs Surf.Area= 5,642 sf Storage= 9,690 ff
Plug-Flow detention time= 8.1 min calculated for 2.487 af (100% of inflow)
Center-of-Mass det. time $=8.1 \mathrm{~min}$ (788.6-780.5)

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 16

Summary for Pond 1LRT: 1 Lower Right Terrace

Inflow Area $=$	4.856 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$23.71 \mathrm{cfs} @$	12.23 hrs , Volume=	2.690 af
Outflow	$=$	$23.58 \mathrm{cfs} @$	12.24 hrs , Volume=	2.690 af , Atten=1\%, Lag= $=0.9 \mathrm{~min}$
Primary	$=$	$23.58 \mathrm{cfs} @$	12.24 hrs , Volume=	2.690 af

Routing by Stor-Ind method, Time Span=0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev= 4.27' @ 12.24 hrs Surf.Area= 5,673 sf Storage= 9,770 of
Plug-Flow detention time $=8.0$ min calculated for 2.689 af (100% of inflow)
Center-of-Mass det. time $=8.0 \mathrm{~min}$ (788.8 - 780.7)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{l} \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=23.55 cfs @ 12.24 hrs HW=4.27' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 17.94 cfs @ 1.70 fps)
—2=Culvert (Inlet Controls 5.61 cfs @ 7.39 fps)

Summary for Pond 1ULT: 1 Upper Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=2.07' @ 12.32 hrs Surf.Area=1,906 sf Storage= 1,733 cf
Plug-Flow detention time $=3.2 \mathrm{~min}$ calculated for 0.503 af (100% of inflow)
Center-of-Mass det. time $=3.1 \mathrm{~min}$ (780.5-777.3)

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} / /-0.60^{\prime} \mathrm{S}=0.0200 / / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=3.63 cfs @ 12.32 hrs HW=2.07' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 3.63 cfs @ 4.78 fps)

Summary for Pond 1URT: 1 Upper Right Terrace

Inflow Area $=$	1.053 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-Y e a r, 24-$ Hour event
Inflow	$=$	$5.91 \mathrm{cfs} @$	12.18 hrs, Volume $=$
Outflow	$=$	$3.92 \mathrm{cfs} @$	12.35 hrs , Volume $=$
Primary	$=$	$3.92 \mathrm{cfs} @$	12.35 hrs , Volume $=$

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=2.34' @ 12.35 hrs Surf.Area= 2,291 sf Storage= 2,288 cf
Plug-Flow detention time $=3.7 \mathrm{~min}$ calculated for 0.583 af (100% of inflow)
Center-of-Mass det. time $=3.7 \mathrm{~min}(781.7-778.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD(8) $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 18

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert= $0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$
$\begin{aligned} & \text { Primary } \\ & -E_{1}=\mathrm{Cu} \\ & 2=\mathrm{Cu} \end{aligned}$	OutFlow stom We lvert (Inl		12.35 hrs HW=2.33' (Free Discharge) rols 0.00 cfs) cfs @ 5.16 fps)

Summary for Pond 2LLT: 2 Lower Left Terrace

Inflow Are	3.349 ac ,	0.00\% Impervious, Inflow Depth = 6.65"		
Inflow	16.21 cfs @	12.08 hrs, Volume=	1.855 af	
Outflow	12.48 cfs @	12.16 hrs , Volume=	1.855 af,	Atten= 23\%, Lag= 5.0 min
Primary	12.48 cfs @	12.16 hrs , Volume $=$	1.855 af	

Routing by Stor-Ind method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.14' @ 12.16 hrs Surf.Area= 5,401 sf Storage= 9,069 cf
Plug-Flow detention time $=10.0 \mathrm{~min}$ calculated for 1.855 af (100% of inflow)
Center-of-Mass det. time= $10.0 \mathrm{~min}(783.8-773.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv=2.62 (C=3.28) Head (feet) 0.000 .70
	Primary	0.00'	Width (feet) 38.0042 .90
			11.8" Round Culvert
			$\mathrm{L}=30.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=0.00' $/-0.60$ ' S=0.0200'/'' Cc= 0.900
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=12.41 cfs @ 12.16 hrs HW=4.14' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 6.89 cfs @ 1.24 fps)
2=Culvert (Inlet Controls 5.52 cfs @ 7.26 fps)

Summary for Pond 2LRT: 2 Lower Right Terrace

Inflow	3.308	0.00\% Impervious, Inflow Depth $=6.65{ }^{\prime \prime}$		" for 25-Year, 24-Hour event
Inflow	16.17 cfs @	12.08 hrs, Volume=	1.832 af	
Outflow	12.36 cfs @	12.16 hrs , Volume $=$	$1.832 \mathrm{af}, \mathrm{A}$	Atten=24\%, Lag= 5.1 min
Primary	12.36 cfs @	12.16 hrs, Volume=	1.832 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.14' @ 12.16 hrs Surf.Area= $5,398 \mathrm{sf}$ Storage= 9,061 of
Plug-Flow detention time $=10.0$ min calculated for 1.832 af (100% of inflow)
Center-of-Mass det. time $=10.0 \mathrm{~min}(783.6-773.6)$

Primary OutFlow Max=12.29 cfs @ 12.16 hrs HW=4.14' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 6.77 cfs @ 1.23 fps)
-2=Culvert (Inlet Controls 5.52 cfs @ 7.26 fps)

Summary for Pond 2ULT: 2 Upper Left Terrace

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® 10.00 s/n 04891 © 2011 HydroCAD Software Solutions LLC
Page 20

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 ~ / / ' \quad \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=5.12 cfs @ 12.28 hrs HW=3.64' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
$2=$ Culvert (Inlet Controls 5.12 cfs @ 6.75 fps)

Summary for Pond 2URT: 2 Upper Right Terrace

Inflow Area $=$	1.730 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$12.76 \mathrm{cfs} @$	12.07 hrs, Volume=	0.958 af
Outflow	$=$	$5.08 \mathrm{cfs} @$	12.28 hrs, Volume=	0.958 af, Atten= $=60 \%$, Lag= 12.2 min
Primary	$=$	$5.08 \mathrm{cfs} @$	12.28 hrs , Volume=	0.958 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.58' @ 12.28 hrs Surf.Area= 4,328 sf Storage= $6,346 \mathrm{cf}$
Plug-Flow detention time $=7.3 \mathrm{~min}$ calculated for 0.958 af (100% of inflow)
Center-of-Mass det. time $=7.3 \mathrm{~min}$ (777.1-769.8)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Primary OutFlow Max=5.08 cfs @ 12.28 hrs HW=3.58' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 5.08 cfs @ 6.68 fps)

Summary for Pond 3LLT: 3 Lower Left Terrace

Inflow Ar	3.16	0.00\% Impervious,	pth $=6.6$	nt
Inflow	16.02 cfs @	12.08 hrs, Volume=	1.750 af	
Outflow	11.86 cfs @	12.17 hrs , Volume $=$	1.750 af,	Atten $=26 \%, \operatorname{Lag}=5.6 \mathrm{~min}$
Primary	11.86 cfs @	12.17 hrs , Volume=	1.750 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.14' @ 12.17 hrs Surf.Area=5,384 sf Storage= 9,025 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.750 af (100% of inflow)
Center-of-Mass det. time $=9.8 \mathrm{~min}$ (782.9 - 773.1)

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0$ ' CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert $=0.00^{\prime} /-0.60 ' \mathrm{~S}=0.0200 ' / 1 \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76$ sf

Primary OutFlow Max=11.84 cfs @ 12.17 hrs HW=4.14' (Free Discharge)
—1=Custom Weir/Orifice (Weir Controls 6.33 cfs @ 1.21 fps)
-2=Culvert (Inlet Controls $5.51 \mathrm{cfs} @ 7.26 \mathrm{fps}$)

Summary for Pond 3LRT: 3 Lower Right Terrace

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=4.10' @ 12.22 hrs Surf.Area= 5,301 sf Storage= 8,819 cf
Plug-Flow detention time $=10.6 \mathrm{~min}$ calculated for 1.751 af (100% of inflow)
Center-of-Mass det. time= $10.6 \mathrm{~min}(788.6-778.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$) Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00^{\prime} /-0.60 ' \mathrm{~S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76$ sf

Primary OutFlow Max=9.32 cfs @ 12.22 hrs HW=4.10' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $3.83 \mathrm{cfs} @ 1.02 \mathrm{fps}$)
$\mathbf{2}=$ Culvert (Inlet Controls $5.48 \mathrm{cfs} @ 7.22 \mathrm{fps}$)

Summary for Pond 3ULT: 3 Upper Left Terrace

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 23

Primary OutFlow Max=4.89 cfs @ 12.26 hrs HW=3.36' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 4.89 cfs @ 6.44 fps)

Summary for Pond 3URT: 3 Upper Right Terrace

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

0.00^{\prime} 11.8" Round Culvert

$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
Inlet / Outlet Invert= $0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200$ '/' $\mathrm{Cc}=0.900$
$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$
Primary OutFlow Max=3.86 cfs @ 12.35 hrs HW=2.28' (Free Discharge)

- 1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls $3.86 \mathrm{cfs} @ 5.08 \mathrm{fps}$)

Summary for Pond 4LLT: 4 Lower Left Terrace

Inflow Area $=$	3.162 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$16.04 \mathrm{cfs} @$	12.08 hrs, Volume=	1.752 af
Outflow	$=$	$11.89 \mathrm{cfs} @$	12.17 hrs, Volume $=$	1.752 af , Atten= 26%, Lag=
Primary	$=$	$11.89 \mathrm{cfs} @$	12.17 hrs , Volume $=$	1.752 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.14' @ 12.17 hrs Surf.Area=5,385 sf Storage=9,028 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.752 af (100% of inflow)
Center-of-Mass det. time $=9.8 \mathrm{~min}(782.9-773.0)$

Volume	Invert Avai	il.Storage Stora	escription
\#1	0.00'	12,399 cf Custom Stage Data (Prismatic)Listed below (Recalc)	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} /-0.60{ }^{\prime} \mathrm{S}=0.0200 ' / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=11.88 cfs @ 12.17 hrs HW=4.14' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $6.37 \mathrm{cfs} @ 1.21 \mathrm{fps}$)
-2=Culvert (Inlet Controls 5.51 cfs @ 7.26 fps)

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 25

Summary for Pond 4LRT: 4 Lower Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.13' @ 12.17 hrs Surf.Area= 5,380 sf Storage= 9,016 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.742 af (100% of inflow)
Center-of-Mass det. time $=9.8 \mathrm{~min}(782.8-773.0)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{I} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=11.70 cfs @ 12.17 hrs HW=4.13' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $6.19 \mathrm{cfs} @ 1.20 \mathrm{fps}$)
—2=Culvert (Inlet Controls 5.51 cfs @ 7.26 fps)

Summary for Pond 4ULT: 4 Upper Left Terrace

Inflow Area $=$	1.580 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$11.65 \mathrm{cfs} @$	12.07 hrs , Volume $=$	0.875 af
Outflow	$=$	$4.89 \mathrm{cfs} @$	12.26 hrs , Volume $=$	0.875 af , Atten= $=58 \%$, Lag $=11.0 \mathrm{~min}$
Primary	$=$	$4.89 \mathrm{cfs} @$	12.26 hrs , Volume $=$	0.875 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.36' @ 12.26 hrs Surf.Area=3,925 sf Storage= 5,438 cf
Plug-Flow detention time $=6.5 \mathrm{~min}$ calculated for 0.875 af (100% of inflow)
Center-of-Mass det. time $=6.5 \mathrm{~min}$ (776.3 - 769.8)

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.35' @ 12.26 hrs Surf.Area=3,902 sf Storage= 5,390 of
Plug-Flow detention time $=6.4 \mathrm{~min}$ calculated for 0.871 af (100% of inflow)
Center-of-Mass det. time $=6.4 \mathrm{~min}(776.2-769.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 27

Device	Routing	Invert	Outlet Devices	
\#1	Primary	4.00'	Custom Weir/Orifice, $\mathrm{Cv}=2.62$ ($\mathrm{C}=3.28$)	
			Head (feet) 0.000 .70	
			Width (feet) 38.0042 .90	
\#2	Primary	0.00'	11.8" Round Culvert	
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$	
			Inlet / Outlet Invert $=0.00^{\prime} / /-0.60 ' \mathrm{~S}=0.0200 ' / \prime \mathrm{Cc}=0.900$	
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$	
Primary OutFlow Max=4.88 cfs @ 12.26 hrs HW=3.35' (Free Discharge) - $1=$ Custom Weir/Orifice (Controls 0.00 cfs) 2=Culvert (Inlet Controls 4.88 cfs @ 6.43 fps)				

Summary for Pond 5LLT: 5 Lower Left Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.14' @ 12.17 hrs Surf.Area= 5,386 sf Storage= 9,030 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.752 af (100% of inflow)
Center-of-Mass det. time $=9.8 \mathrm{~min}$ (782.8-773.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \mathrm{S}=0.0200 \% \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=11.91 cfs @ 12.17 hrs HW=4.14' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls $6.40 \mathrm{cfs} @ 1.21 \mathrm{fps}$)
-2=Culvert (Inlet Controls 5.51 cfs @ 7.26 fps)

Summary for Pond 5LRT: 5 Lower Right Terrace

Inflow Area $=$	3.140 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$15.94 \mathrm{cfs} @$	12.08 hrs, Volume $=$	1.739 af
Outflow	$=$	$11.70 \mathrm{cfs} @$	12.17 hrs, Volume $=$	1.739 af , Atten= 27%, Lag= 5.7 min
Primary	$=$	$11.70 \mathrm{cfs} @$	12.17 hrs , Volume $=$	1.739 af

Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Peak Elev=4.13' @ 12.17 hrs Surf.Area= 5,379 sf Storage= $9,013 \mathrm{cf}$
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.739 af (100% of inflow)
Center-of-Mass det. time $=9.8 \mathrm{~min}$ (782.8 - 773.0)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	$12,399 \mathrm{cf}$	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime} \mathrm{CPP}$, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{l} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=11.66 cfs @ 12.17 hrs HW=4.13' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 6.15 cfs @ 1.20 fps)
-2=Culvert (Inlet Controls 5.51 cfs @ 7.25 fps)

Summary for Pond 5ULT: 5 Upper Left Terrace

Inflow Area = $\quad 1.579 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for 25 -Year, 24 -Hour event Inflow = 11.65 cfs @ 12.07 hrs, Volume= 0.875 af Outflow $=4.89 \mathrm{cfs} @ 12.26 \mathrm{hrs}$, Volume $=0.875 \mathrm{af}$, Atten= 58%, Lag= 11.0 min Primary = 4.89 cfs @ 12.26 hrs, Volume= 0.875 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Peak Elev=3.36' @ 12.26 hrs Surf.Area=3,922 sf Storage= 5,432 cf

Plug-Flow detention time $=6.5 \mathrm{~min}$ calculated for 0.875 af (100% of inflow)
Center-of-Mass det. time $=6.5 \mathrm{~min}(776.3-769.8)$

Watershed B
Type I/I 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 29

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Custo	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv=2.62 (C=3.28) Head (feet) 0.000 .70
	Primary		Width (feet) 38.0042 .90
		0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert=0.00'/-0.60' S=0.0200 $/ / \prime \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=4.89 cfs @ 12.26 hrs HW=3.36' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls 4.89 cfs @ 6.44 fps)

Summary for Pond 5URT: 5 Upper Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.35' @ 12.26 hrs Surf.Area= 3,900 sf Storage $=5,384$ cf
Plug-Flow detention time $=6.4 \mathrm{~min}$ calculated for 0.870 af (100% of inflow)
Center-of-Mass det. time $=6.4 \mathrm{~min}(776.2-769.8)$

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	0.00^{\prime}	12,399 cf	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC Page 30

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 (C=3.28)
			Head (feet) 0.000 .70
			Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert
			$\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$
			Inlet / Outlet Invert= $0.00{ }^{\prime} / /-0.60 ' S=0.0200 ' / / \mathrm{Cc}=0.900$
			$\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$

Primary OutFlow Max=4.88 cfs @ 12.26 hrs HW=3.35' (Free Discharge)
-1=Custom Weir/Orifice (Controls 0.00 cfs)
-2=Culvert (Inlet Controls $4.88 \mathrm{cfs} @ 6.43 \mathrm{fps}$)

Summary for Pond 6LLT: 6 Lower Left Terrace

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv= 2.62 ($\mathrm{C}=3.28$) Head (feet) $0.00 \quad 0.70$ Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\circ}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert $=0.00^{\prime} /-0.60 \quad \mathrm{~S}=0.0200 \mathrm{I} / \mathrm{Cc} \quad \mathrm{Cc}=0.900$ $n=0.012$, Flow Area $=0.76$ sf
$\begin{aligned} & \text { Primary } \\ & E_{1}=\mathrm{Cu} \\ & 2=\mathrm{Cu} \end{aligned}$	OutFlow stom Wei Ivert (In	95 cfs (Weir ls 5.51	@ 12.17 hrs HW=4.14' (Free Discharge) Controls 6.44 cfs @ 1.21 fps) cfs @ 7.26 fps)

Summary for Pond 6LRT: 6 Lower RightTerrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=4.13' @ 12.18 hrs Surf.Area= 5,374 sf Storage=9,001 cf
Plug-Flow detention time $=9.8 \mathrm{~min}$ calculated for 1.733 af (100% of inflow)
Center-of-Mass det. time $=9.8$ min (782.9-773.0)

Primary OutFlow Max=11.52 cfs @ 12.18 hrs HW=4.13' (Free Discharge)
-1=Custom Weir/Orifice (Weir Controls 6.01 cfs @ 1.19 fps)
2=Culvert (Inlet Controls 5.51 cfs @ 7.25 fps)

Summary for Pond 6ULT: 6 Upper Left Terrace

Inflow Area $=$	1.579 ac,	0.00%	Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$11.65 \mathrm{cfs} @$	12.07 hrs, Volume=	0.875 af
Outflow	$=$	$4.89 \mathrm{cfs} @$	12.26 hrs, Volume $=$	0.875 af, Atten= 58%, Lag= 11.0 min
Primary	$=$	$4.89 \mathrm{cfs} @$	12.26 hrs, Volume $=$	0.875 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.36' @ 12.26 hrs Surf.Area= 3,922 sf Storage $=5,432$ cf
Plug-Flow detention time $=6.5 \mathrm{~min}$ calculated for 0.875 af (100% of inflow)
Center-of-Mass det. time $=6.5 \mathrm{~min}(776.3-769.8)$

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 32

Summary for Pond 6URT: 6 Upper Right Terrace

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev= 3.35' @ 12.26 hrs Surf.Area=3,899 sf Storage=5,383 cf
Plug-Flow detention time $=6.4 \mathrm{~min}$ calculated for 0.870 af (100% of inflow)
Center-of-Mass det. time $=6.4 \mathrm{~min}(776.2-769.8)$

Volume	Invert Avail.Storage Storage Description		
\#1	0.00'	12,399 cf Cust	tage Data (Prismatic)Listed below (Recalc)
Elevation (feet)	Surf.Area $(\mathrm{sq}-\mathrm{ft})$	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
0.00	0	0	0
0.10	41	2	2
1.00	716	341	343
2.00	1,803	1,260	1,602
3.00	3,261	2,532	4,134
4.00	5,091	4,176	8,310
4.70	6,592	4,089	12,399

Watershed B
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/1/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 33

Device	Routing	Invert	Outlet Devices
\#1	Primary	4.00'	Custom Weir/Orifice, Cv=2.62 (C=3.28) Head (feet) 0.000 .70 Width (feet) 38.0042 .90
\#2	Primary	0.00'	11.8" Round Culvert $\mathrm{L}=30.0^{\prime}$ CPP, projecting, no headwall, $\mathrm{Ke}=0.900$ Inlet / Outlet Invert= $0.00^{\prime} /-0.60^{\prime} \quad \mathrm{S}=0.0200 \mathrm{I} / \mathrm{Cc}=0.900$ $\mathrm{n}=0.012$, Flow Area $=0.76 \mathrm{sf}$
$\begin{aligned} & \text { Primary } \\ & -1=C \\ & 2=C u \end{aligned}$	OutFlow out We vert (Inl	8 cfs (Con s 4.88	12.26 hrs HW=3.35' (Free Discharge) ols 0.00 cfs) cfs @ 6.43 fps)

Technically Complete, March 11, 2016

Appendix III-C. 4

HydroCAD Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Summary for Subcatchment A5LLS: 5 Lower Left Subcat

Runoff $=22.85$ cfs @ 12.09 hrs , Volume $=1.842 \mathrm{af}$, Depth= $8.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment A5LRS: 5 Lower Right Subcat

Runoff $=\quad 22.63 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=1.843$ af, Depth $=8.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrl} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 80,953 & 92 & \\ * & 14,272 & 92 & \\ * & 16,114 & 96\end{array}\right)$

Summary for Subcatchment A5MLS: 5 Middle Left Subcat

Runoff $=29.47$ cfs @ 12.10 hrs, Volume $=\quad 2.405 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 2
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 116,616 & 92 & & \\ * & 16,300 & 96 & & \\ * & 14,437 & 92\end{array}\right)$

Summary for Subcatchment A5MRS: 5 Middle Right Subcat
Runoff $=\quad 29.86$ cfs @ 12.11 hrs, Volume $=\quad 2.486$ af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment A5ULS: 5 Upper Left Subcat

Runoff $=26.30 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= 2.189 af , Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN D	Description		
* 108,278	92			
* 13,696	96			
* 12,130	92			
$\begin{aligned} & 134,104 \\ & 134,104 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.9297	0.2500	0.63		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment A5URS: 5 Upper Right Subcat

Runoff $=\quad 26.75 \mathrm{cfs}$ @ 12.11 hrs , Volume= $\quad 2.241 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN	Description		
* 118,162	92			
* 8,990	92			
* 10,150	96			
137,302	92	Weighted Average 100.00\% Pervious Area		
137,302				
$\begin{array}{r} \text { Tc } \\ (\mathrm{min}) \\ \text { Length } \\ \text { (feet }) \end{array}$	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.236	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1336	Total			

Summary for Subcatchment B7LLS: 7 Lower Left Subcat

Runoff = $21.33 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= 1.741 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Area (sf)	CN D	Description		
* 83,779	92			
* 12,131	96			
* 10,745	92			
$\begin{aligned} & 106,655 \\ & 106,655 \end{aligned}$	$\begin{array}{ll} 92 & 4 \\ & 1 \end{array}$	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.3268	0.2500	0.62		$\begin{aligned} & \text { Sheet Flow, } \\ & n=0.150 \quad P 2=3.75 " \end{aligned}$

Summary for Subcatchment B7LRS: 7 Lower Right Subcat

Runoff $=\quad 20.97$ cfs @ 12.10 hrs , Volume= $\quad 1.699 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 4

	ea (sf)	CN D	Description		
	81,647	92			
	11,925	96			
	10,562	92			
	$\begin{aligned} & 04,134 \\ & 04,134 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity ($\mathrm{ft} / \mathrm{sec}$)	Capacity (cfs)	Description
7.1	262	0.2500	0.61		Sheet Flow, $n=0.150$

Summary for Subcatchment B7ULS: 7 Upper Left Subcat

Runoff $=22.91$ cfs @ 12.11 hrs, Volume= 1.907 af, Depth= 8.53 "

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment B7URS: 7 Upper Right Subcat

Runoff $=\quad 22.70$ cfs @ 12.11 hrs, Volume= $\quad 1.889 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment C5LLS: 5 Lower Left Subcat

Runoff $=\quad 21.07 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume= $\quad 1.709 \mathrm{af}$, Depth= $8.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment C5LRS: 5 Lower Right Subcat

Runoff $=\quad 21.24$ cfs @ 12.09 hrs, Volume $=1.713$ af, Depth $=8.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment C5MLS: 5 Middle Left Subcat

Runoff $=27.82$ cfs @ 12.11 hrs, Volume $=\quad 2.307$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 6

Summary for Subcatchment C5MRS: 5 Middle Right Subcat

Runoff $=27.64$ cfs @ 12.10 hrs , Volume= 2.256 af , Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment C5ULS: 5 Upper Left Subcat

Runoff $=26.59 \mathrm{cfs}$ @ 12.11 hrs , Volume= 2.220 af , Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	111,570	92	
$*$	12,982	96	
$*$	11,498	92	
	136,050	92	Weighted Average
	136,050		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 7

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)
7.9	300	0.2500	0.63	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$ Shallow Concentrated Flow,
0.1	27	0.2500	3.50	Short Grass Pasture Kv=7.0 fps
8.0	327	Total		

Summary for Subcatchment C5URS: 5 Upper Right Subcat

Runoff $=\quad 25.43 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=\quad 2.116 \mathrm{af}$, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrl} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 104,706 & 92 & \\ * & 13,248 & 96 & \\ * & 11,734 & 92\end{array}\right)$

Summary for Subcatchment D7LLS: 7 Lower Left Subcat

Runoff $=\quad 20.04$ cfs @ 12.11 hrs , Volume $=1.673 \mathrm{af}$, Depth $=8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCADB $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 8

Summary for Subcatchment D7LRS: 7 Lower Right Subcat

Runoff $=19.93 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= 1.658 af , Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN Description			
82,704				
10,031	96			
* 8,885	92			
$\begin{aligned} & 101,620 \\ & 101,620 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150^{\prime} P 2=3.75^{\prime \prime}$
$0.0 \quad 7$	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

7.9307 Total

Summary for Subcatchment D7ULS: 7 Upper Left Subcat

Runoff $=\quad 21.37$ cfs @ 12.11 hrs, Volume= $\quad 1.790$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Area (sf)	CN Description			
* 90,839				
* 9,986	96			
* 8,844	92			
$\begin{aligned} & 109,669 \\ & 109,669 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)			Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.1342	Total			

Summary for Subcatchment D7URS: 7 Upper Right Subcat

Runoff $=\quad 21.01$ cfs @ 12.11 hrs, Volume= $\quad 1.754$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 88,514 & 92 & & \\ * & 10,059 & 96 \\ 8,909 & 92\end{array}\right)$

Summary for Subcatchment E5LLS: 5 Lower Left Subcat

Runoff $=24.56$ cfs @ 12.10 hrs , Volume $=\quad 2.040$ af, Depth= $8.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment E5LRS: 5 Lower Right Subcat

Runoff $=24.56 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume $=\quad 2.040 \mathrm{af}$, Depth= $8.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	91,941	92	
$*$	16,597	96	
$*$	14,700	92	
	123,238	93	Weighted Average
	123,238		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® 10.00 s/n 04891 (c) 2011 HydroCAD Software Solutions LLC
Page 10

$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \end{gathered}$	$\begin{gathered} \begin{array}{c} \text { Length } \\ \text { (feet) } \end{array} \end{gathered}$	$\begin{gathered} \text { Slope } \\ \text { (ft/f) } \end{gathered}$	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
7.6	286	0.2500	0.62		Sheet Flow,

Summary for Subcatchment E5MLS: 5 Middle Left Subcat

Runoff $=29.83$ cfs @ 12.11 hrs, Volume= 2.491 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment E5MRS: 5 Middle Right Subcat

Runoff $=29.83$ cfs @ 12.11 hrs, Volume= 2.491 af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100 -Year, 24-Hour Rainfall=9.50"

Area (sf)	CN	Description		
* 124,482	92			
* 14,921	96			
* 13,215	92			
$\begin{aligned} & 152,618 \\ & 152,618 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.116	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 11

Summary for Subcatchment E5ULS: 5 Upper Left Subcat

Runoff $=27.54$ cfs @ 12.11 hrs, Volume= 2.307 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 117,133 & 92 & & \\ * & 12,856 & 96 \\ 11,386 & 92\end{array}\right)$

Summary for Subcatchment E5URS: 5 Upper Right Subcat

Runoff $=28.02$ cfs @ 12.11 hrs, Volume=
2.347 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN	Description		
* 119,156	92			
* 13,076	96			
* 11,582	92			
$\begin{aligned} & 143,814 \\ & 143,814 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \quad P 2=3.75^{\prime \prime}$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

8.1342 Total

Summary for Subcatchment EMCS: East Middle Channel Subcat

Runoff $=12.80$ cfs @ 12.00 hrs, Volume $=0.826$ af, Depth= $8.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 12

	Area (sf)	CN	Description
$*$	18,109	96	
$*$	31,782	92	
	49,891	93	Weighted Average
	49,891		100.00\% Pervious Area

Summary for Subcatchment EMS: East Middle Subcat

Runoff $=82.45$ cfs @ 12.61 hrs, Volume= $\quad 13.751$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN	Description		
* 8	42,596	92			
842,596		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
36.5	300	0.0055	0.14		Sheet Flow, Grass: Short $\mathrm{n}=0.150 \quad \mathrm{P} 2=3.75{ }^{\prime \prime}$
9.1	282	0.0055	0.52		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
45.6	582	Total			

Summary for Subcatchment F7LLS: 7 Lower Left Subcat

Runoff $=\quad 21.90$ cfs @ 12.11 hrs, Volume $=\quad 1.829$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN Description			
91,194				
11,064	96			
9,799	92			
$\begin{aligned} & 112,057 \\ & 112,057 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope Velocity Capacity (ft/ft) (ft/sec) (cfs)			Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150$ P2 $=3.75^{\prime \prime}$
0.115	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0315	Total			

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 13

Summary for Subcatchment F7LRS: 7 Lower Right Subcat

Runoff $=21.87$ cfs @ 12.11 hrs, Volume= 1.826 af, Depth= $8.53{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN Description			
$\begin{array}{r} 91,012 \\ 11,071 \\ 9,805 \end{array}$		92			
		96			
		92			
$\begin{aligned} & 111,888 \\ & 111,888 \end{aligned}$			Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$
0.1	13	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps

8.0313 Total

Summary for Subcatchment F7ULS: 7 Upper Left Subcat

Runoff $=23.94$ cfs @ 12.11 hrs, Volume= 2.005 af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 101,812 & 92 & & \\ * & 11,176 & 96 \\ 9,898 & 92\end{array}\right)$

Summary for Subcatchment F7URS: 7 Upper Right Subcat

Runoff $=23.58$ cfs @ 12.11 hrs, Volume $=\quad 1.975 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN D	Description		
100,155	92			
* 11,060	96			
* 9,796	92			
$\begin{aligned} & 121,011 \\ & 121,011 \end{aligned}$		Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { ' } P 2=3.75^{\prime \prime}$
0.243	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1343	Total			

Summary for Subcatchment G5LLS: 5 Lower Left Subcat

Runoff $=\quad 24.46 \mathrm{cfs}$ @ 12.11 hrs , Volume= 2.052 af, Depth= $8.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrl}\text { Area (sf) } & \text { CN } & \text { Description } \\ * & 93,236 & 92 & \\ * & 16,296 & 96 & \\ * & 14,434 & 92\end{array}\right]$

Summary for Subcatchment G5LRS: 5 Lower Right Subcat

Runoff $=24.56$ cfs @ 12.11 hrs, Volume= $\quad 2.054$ af, Depth= $8.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	93,186	92	
$*$	16,380	96	
$*$	14,508	92	
	124,074	93	Weighted Average
	124,074		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 15

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	295	0.2500	0.63		$\begin{gathered} \text { Sheet Flou } \\ \mathrm{n}=0.150 \end{gathered}$

Summary for Subcatchment G5MLS: 5 Middle Left Subcat

Runoff $=\quad 29.37$ cfs @ 12.11 hrs, Volume $=\quad 2.453$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{rrrll}\text { Area (sf) } & \text { CN } & \text { Description } \\ * & 123,329 & 92 & & \\ * & 14,298 & 96 & & \\ * & 12,664 & 92\end{array}\right)$

Summary for Subcatchment G5MRS: 5 Middle Right Subcat

Runoff $=29.27$ cfs @ 12.11 hrs, Volume= $\quad 2.444$ af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 122,673 & 92 & & \\ * & 14,371 & 96 \\ 12,729 & 92\end{array}\right)$

Summary for Subcatchment G5ULS: 5 Upper Left Subcat

Runoff $=28.23 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.365 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment G5URS: 5 Upper Right Subcat

Runoff $=\quad 27.71$ cfs @ 12.11 hrs, Volume= 2.321 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN	Description		
* 118,133	9296			
12,775				
* 11,315	9692			
142,223	92	Weighted Average 100.00\% Pervious Area		
142,223				
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.246	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1346	Total			

Summary for Subcatchment H7LLS: 7 Lower Left Subcat

Runoff $=\quad 20.69 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= 1.728 af , Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall $=9.50$ "
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 86,611 & 92 & & \\ * & 9,046 & 92\end{array}\right]$

Summary for Subcatchment H7LRS: 7 Lower Right Subcat

Runoff $=\quad 20.69$ cfs @ 12.11 hrs, Volume= 1.728 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment H7ULS: 7 Upper Left Subcat

Runoff = 21.63 cfs @ 12.11 hrs , Volume= 1.812 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment H7URS: 7 Upper Right Subcat

Runoff $=\quad 22.24$ cfs @ 12.11 hrs, Volume= $\quad 1.863$ af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{rrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 94,995 & 92 & & \\ * & 8,993 & 92 \\ 10,154 & 96\end{array}\right)$

Summary for Subcatchment I5LLS: 5 Lower Left Subcat

Runoff $=\quad 23.36 \mathrm{cfs}$ @ 12.09 hrs , Volume= $\quad 1.883 \mathrm{af}$, Depth= $8.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment I5LRS: 5 Lower Right Subcat
Runoff $=\quad 23.12 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1.876$ af, Depth $=8.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment I5MLS: 5 Middle Left Subcat

Runoff $=29.98$ cfs @ 12.10 hrs, Volume= 2.447 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 20
Summary for Subcatchment I5MRS: 5 Middle Right Subcat
Runoff $=\quad 30.14 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.500 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment I5ULS: 5 Upper Left Subcat

Runoff $=27.21 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=\quad 2.265 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 105,593 & 92 & & \\ * & 13,353 & 96 & \\ * & 19,838 & 92\end{array}\right)$

Summary for Subcatchment I5URS: 5 Upper Right Subcat

Runoff $=28.49 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.379$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN	Description		
113,254		92		
13,076	96			
19,427	92			
$\begin{aligned} & 145,757 \\ & 145,757 \end{aligned}$	92	Weighted Average		
	100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75{ }^{\prime \prime}$
0.130	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0330	Total			

Summary for Subcatchment J7LLS: 7 Lower Left Subcat

Runoff $=19.83$ cfs @ 12.10 hrs , Volume= 1.612 af , Depth= $8.53{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment J7LRS: 7 Lower Right Subcat

Runoff $=19.74$ cfs @ 12.10 hrs , Volume= 1.611 af , Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

	Area (sf)	CN	Description
$*$	72,963	92	
$*$	10,353	96	
$*$	15,382	92	
	98,698	92	Weighted Average
	98,698		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 22

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{tt})$	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.3	268	0.2500	0.62		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment J7ULS: 7 Upper Left Subcat

Runoff $=\quad 20.93$ cfs @ 12.11 hrs, Volume= $\quad 1.736$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment J7URS: 7 Upper Right Subcat

Runoff $=\quad 21.11$ cfs @ 12.11 hrs, Volume= $\quad 1.757$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment K5LLS: 5 Lower Left Subcat

Runoff $=22.53 \mathrm{cfs} @ 12.09 \mathrm{hrs}$, Volume $=1.817$ af, Depth= $8.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 23
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 72,472 & 92 & & \\ * & 14,998 & 96 & & \\ * & 22,282 & 92\end{array}\right)$

Summary for Subcatchment K5LRS: 5 Lower Right Subcat

Runoff $=\quad 22.99$ cfs @ 12.09 hrs, Volume= 1.842 af, Depth= $8.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall=9.50"

Summary for Subcatchment K5MLS: 5 Middle Left Subcat

Runoff $=29.87$ cfs @ 12.11 hrs, Volume= 2.469 af , Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Subcatchment K5MRS: 5 Middle Right Subcat

Runoff = 29.53 cfs @ 12.10 hrs, Volume= 2.401 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment K5ULS: 5 Upper Left Subcat

Runoff = 28.70 cfs @ 12.11 hrs, Volume= 2.397 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24 -Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 113,507 & 92 & & \\ * & 13,416 & 96\end{array}\right]$

Summary for Subcatchment K5URS: 5 Upper Right Subcat

Runoff $=\quad 27.82$ cfs @ 12.11 hrs, Volume= 2.307 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment L7LLS: 7 Lower Left Subcat

Runoff $=27.69 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.304 \mathrm{af}$, Depth= $8.53{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN92	Description		
107,663				
13,489	96			
20,041	92			
$\begin{aligned} & 141,193 \\ & 141,193 \end{aligned}$		Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ftft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.05	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
7.9305	Total			

Summary for Subcatchment L7LRS: 7 Lower Right Subcat

Runoff $=27.47$ cfs @ 12.11 hrs, Volume= 2.286 af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	106,367	92	
$*$	13,570	96	
$*$	20,160	92	
	140,097	92	Weighted Average
	140,097		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	296	0.2500	0.63		Sheet Flow $n=0.150$

Summary for Subcatchment L7ULS: 7 Upper Left Subcat
Runoff $=30.25$ cfs @ 12.11 hrs, Volume= 2.534 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50^{\prime \prime}$

Summary for Subcatchment L7URS: 7 Upper Right Subcat

Runoff $=29.26$ cfs @ 12.11 hrs, Volume= $\quad 2.443$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 116,121 & 92 & & \\ * & 13,517 & 96 & & \\ 20,082 & 92\end{array}\right)$

Summary for Subcatchment M5LLS: 5 Lower Left Subcat
Runoff $=24.78$ cfs @ 12.10 hrs , Volume= $\quad 2.058$ af, Depth= $8.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment M5LRS: 5 Lower Right Subcat

Runoff $=26.62$ cfs @ 12.10 hrs , Volume=
2.193 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment M5MLS: 5 Middle Left Subcat
Runoff $=30.14$ cfs @ 12.11 hrs, Volume= $\quad 2.516$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © © 2011 HydroCAD Software Solutions LLC
Page 28

Area (sf)	CN	Description		
125,780	92			
15,068	96			
13,346	92			
$\begin{aligned} & 154,194 \\ & 154,194 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.116	0.2500	3.50		Shallow Concentrated Flow, $\mathrm{Kv}=7.0 \mathrm{fps}$

Summary for Subcatchment M5MRS: 5 Middle Right Subcat
Runoff $=31.90 \mathrm{cfs}$ @ 12.11 hrs , Volume= 2.664 af , Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment M5ULS: 5 Upper Left Subcat

Runoff = 28.93 cfs @ 12.11 hrs , Volume= 2.423 af , Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 123,162 & 92 & & \\ * & 13,437 & 96 \\ 11,901 & 92\end{array}\right)$

Summary for Subcatchment M5URS: 5 Upper Right Subcat

Runoff $=\quad 30.02 \mathrm{cfs} @ 12.11$ hrs, Volume= $\quad 2.515 \mathrm{af}$, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 121,111 & 92 & & \\ * & 13,265 & 96\end{array}\right]$

Summary for Subcatchment N7LLS: 7 Lower Left Subcat

Runoff $=\quad 20.83 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 1.745$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \sin 04891$ © 2011 HydroCAD Software Solutions LLC
Page 30

	Area (sf)	CN	Description
$*$	88,465	92	
$*$	9,797	96	
$*$	8,67	92	
	106,939	92	Weighted Average
	106,939		100.00\% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ (\mathrm{cfs}) \end{array}$	Description
7.9	300	0.2500	0.63		Sheet Flow, $n=0.150 \text { ' } P 2=3.75 \text { " }$
0.2	38	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

8.1338 Total

Summary for Subcatchment N7LRS: 7 Lower Right Subcat

Runoff $=\quad 20.73$ cfs @ 12.11 hrs, Volume= $\quad 1.731$ af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Area (sf)	CN D	Description		
87,436	92			
* 9,891	96			
8,761	92			
$\begin{aligned} & 106,088 \\ & 106,088 \end{aligned}$		Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.128	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0328	Total			

Summary for Subcatchment N7ULS: 7 Upper Left Subcat

Runoff $=\quad 22.38$ cfs @ 12.11 hrs, Volume= $\quad 1.880$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 31

Area (sf)	CN D	Description		
96,720	92			
9,807	96			
8,686	92			
$\begin{aligned} & 115,213 \\ & 115,213 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.366	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.2366	Total			

Summary for Subcatchment N7URS: 7 Upper Right Subcat

Runoff $=21.42$ cfs @ 12.11 hrs, Volume= $\quad 1.794$ af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment O5LLS: 5 Lower Left Subcat

Runoff $=\quad 27.47$ cfs @ 12.11 hrs, Volume= $\quad 2.271$ af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 32

Summary for Subcatchment O5LRS: 5 Lower Right Subcat

Runoff = 27.16 cfs @ 12.11 hrs, Volume= 2.261 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

Summary for Subcatchment O5MLS: 5 Middle Left Subcat

Runoff $=33.36$ cfs @ 12.11 hrs, Volume= 2.785 af, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	132,089	92	
$*$	15,519	96	
	23,057	92	
	170,665	92	Weighted Average
	170,665		100.00% Pervious Area

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$ Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
0.1	22	0.2500	3.50		

Summary for Subcatchment O5MRS: 5 Middle Right Subcat

Runoff $=33.68$ cfs @ 12.11 hrs, Volume= 2.821 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)	CN D	Description		
135,387	92			
* 15,085	96			
* 22,412	92			
$172,884$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \text { ' } \mathrm{P} 2=3.75$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $K v=7.0 \mathrm{fps}$
8.1342	Total			

Summary for Subcatchment O5ULS: 5 Upper Left Subcat

Runoff $=\quad 30.00 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.513 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
$*$	121,507	92	
$*$	13,059	96	
$*$	19,401	92	
	153,967	92	Weighted Average
	153,967		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

| Tc
 (min) | Length
 (feet) | Slope
 $(\mathrm{ft} / \mathrm{ft})$ | Velocity
 $(\mathrm{ft} / \mathrm{sec})$ | Capacity
 (cfs) |
| ---: | ---: | ---: | ---: | :--- | | Description |
| :--- |
| 7.9 |

Summary for Subcatchment O5URS: 5 Upper Right Subcat

Runoff $=30.15 \mathrm{cfs} @ 12.11$ hrs, Volume $=2.533$ af, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24 -Hour Rainfall=9.50"

Summary for Subcatchment P7LLS: 7 Lower Left Subcat
Runoff $=27.29 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 2.271 \mathrm{af}$, Depth= 8.53"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment P7LRS: 7 Lower Right Subcat

Runoff $=\quad 27.12$ cfs @ 12.11 hrs, Volume= 2.265 af, Depth= 8.53"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall=9.50"

Area (sf)	CN Description			
* 106,561	92			
* 12,954	96			
* 19,245	92			
$\begin{aligned} & 138,760 \\ & 138,760 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.113	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.0313	Total			

Summary for Subcatchment P7ULS: 7 Upper Left Subcat

Runoff $=28.84$ cfs @ 12.11 hrs, Volume= 2.408 af , Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 115,032 & 92 & & \\ * & 13,090 & 96 \\ 19,448 & 92\end{array}\right)$

Summary for Subcatchment P7URS: 7 Upper Right Subcat

Runoff $=29.76$ cfs @ 12.11 hrs, Volume= 2.493 af, Depth= $8.53^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50{ }^{\prime \prime}$

	ea (sf)	CN	Description		
120,174		92			
13,111		96			
	19,479	92			
$152,764$		92	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$
0.2	48	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

8.1348 Total

Summary for Subcatchment SDBS: South Detention Basin Subcatchment

Runoff $=544.86$ cfs @ 12.03 hrs, Volume $=39.593$ af, Depth $=9.26^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment WMCS: West Middle Channel Subcat

Runoff $=\quad 4.58$ cfs @ 12.00 hrs , Volume= 0.295 af, Depth= $8.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

	Area (sf)	CN	Description
	6,475	96	
	11,364	92	
	17,839	93	Weighted Average
	17,839		100.00% Pervious Area

Summary for Subcatchment WMS: West Middle Subcat

Runoff $=53.87 \mathrm{cfs} @ 12.48 \mathrm{hrs}$, Volume= $\quad 8.178 \mathrm{af}$, Depth= $8.53^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area (sf)		CN Description			
* 501,116		92			
501,116		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
34.2	300	0.0065	0.15		Sheet Flow, Grass: Short $n=0.150 \quad \mathrm{P} 2=3.75{ }^{\prime \prime}$
3.6	121	0.0065	0.56		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
37.8	421	Total			

Summary for Reach EMC: East Middle Channel

Inflow Area $=$	176.097 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$572.98 \mathrm{cfs} @$	12.43 hrs, Volume $=$	125.303 af
Outflow	$=$	$570.62 \mathrm{cfs} @$	12.49 hrs , Volume $=$	125.303 af , Atten $=0 \%$, Lag $=3.5 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.63 fps , Min. Travel Time $=1.9 \mathrm{~min}$
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=6.6 \mathrm{~min}$
Peak Storage=63,707 cf @ 12.46 hrs
Average Depth at Peak Storage= 2.76'
Bank-Full Depth= 4.00' Flow Area= 196.0 sf, Capacity= 1,118.97 cfs
$35.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 4.0 '/' Top Width=63.00'
Length=517.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.55'

Summary for Reach NDE01: N Ditch E 1

Inflow Area $=79.086 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24-Hour event Inflow $=344.98$ cfs @ 12.38 hrs , Volume $=\quad 56.270$ af Outflow = 341.46 cfs @ 12.43 hrs , Volume= 56.270 af , Atten $=1 \%$, Lag $=3.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.32 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage= 34,185 cf @ 12.40 hrs
Average Depth at Peak Storage= 2.95'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.98 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=432.7' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.30'

Summary for Reach NDE02: N Ditch E 2

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.35 fps , Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage= 34,249 cf @ 12.45 hrs
Average Depth at Peak Storage=2.97'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 634.62 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=428.5^{\prime}$ Slope $=0.0030 \mathrm{l} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach NDE03: N Ditch E 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.36 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=4.5 \mathrm{~min}$
Peak Storage $=30,038$ cf @ 12.49 hrs
Average Depth at Peak Storage=3.00'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.75 cfs
15.00 x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=370.9' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.11'

Summary for Reach NDE04: N Ditch E 4

Inflow Area $=$	87.922 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$357.67 \mathrm{cfs} @$	12.51 hrs, Volume $=$	62.551 af
Outflow	$=$	$356.46 \mathrm{cfs} @$	12.55 hrs , Volume $=$	62.551 af , Atten $=0 \%$, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.37 \mathrm{fps}$, Min. Travel Time= 1.1 min
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=3.5 \mathrm{~min}$
Peak Storage $=23,456$ cf @ 12.53 hrs
Average Depth at Peak Storage=3.02'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 632.71 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=287.4^{\prime}$ Slope $=0.0030 \quad / \prime$
Inlet Invert= 0.00', Outlet Invert= -0.86'

Summary for Reach NDE05: N Ditch E 5

Inflow Area = 123.977 ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=460.37$ cfs @ 12.53 hrs , Volume $=88.182 \mathrm{af}$ Outflow = $459.27 \mathrm{cfs} @ 12.56 \mathrm{hrs}$, Volume $=88.182 \mathrm{af}$, Atten= 0\%, Lag= 1.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.69 \mathrm{fps}$, Min. Travel Time $=1.0 \mathrm{~min}$
Avg. Velocity $=1.51 \mathrm{fps}$, Avg. Travel Time $=3.2 \mathrm{~min}$
Peak Storage= 28,096 cf @ 12.54 hrs
Average Depth at Peak Storage= 3.42'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 633.59 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=286.6^{\prime}$ Slope $=0.0030 \mathrm{I} /$
Inlet Invert= 0.00', Outlet Invert= -0.86^{\prime}

Summary for Reach NDE06: N Ditch E 6
Inflow Area $=126.330$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=463.23 \mathrm{cfs} @ 12.56 \mathrm{hrs}$, Volume $=89.855 \mathrm{af}$
Outflow $=462.20 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=89.855 \mathrm{af}$, Atten $=0 \%$, Lag= 1.7 min
Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.70 \mathrm{fps}$, Min. Travel Time $=1.0 \mathrm{~min}$
Avg. Velocity $=1.50 \mathrm{fps}$, Avg. Travel Time $=3.2 \mathrm{~min}$
Peak Storage= 28,199 cf @ 12.57 hrs
Average Depth at Peak Storage= 3.43'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.81 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/ \prime$ Top Width= 47.00'
Length $=286.4$ ' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.86'

Summary for Reach NDE07: N Ditch E 7

Inflow Area $=$	128.848 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$465.98 \mathrm{cfs} @$	12.58 hrs , Volume	91.645 af
Outflow	$=$	$465.02 \mathrm{cfs} @$	12.61 hrs , Volume $=$	91.645 af , Atten= 0%, Lag= 1.7 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.71 \mathrm{fps}$, Min. Travel Time $=1.0 \mathrm{~min}$
Avg. Velocity $=1.50 \mathrm{fps}$, Avg. Travel Time $=3.2 \mathrm{~min}$
Peak Storage= 28,176 cf @ 12.60 hrs
Average Depth at Peak Storage=3.44'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 635.03 cfs
$15.00^{\prime} \times 4.00$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 285.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.86'

Summary for Reach NDE08: N Ditch E 8

Inflow Area $=$	132.149 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$469.48 \mathrm{cfs} @$	12.61 hrs , Volume	93.992 af
Outflow	$=$	$468.14 \mathrm{cfs} @$	12.65 hrs , Volume $=$	93.992 af , Atten= $=0 \%$, Lag= 2.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.71 fps , Min. Travel Time= 1.3 min
Avg. Velocity $=1.49 \mathrm{fps}$, Avg. Travel Time $=4.2 \mathrm{~min}$
Peak Storage= 37,149 cf @ 12.63 hrs
Average Depth at Peak Storage= 3.45'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.29 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 373.6' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.12'

Summary for Reach NDE09: N Ditch E 9

Inflow Area $=135.653 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow $=472.37$ cfs @ 12.65 hrs, Volume $=96.483$ af Outflow = 470.86 cfs @ 12.69 hrs , Volume $=96.483 \mathrm{af}$, Atten= 0%, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.72 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 42,545 cf @ 12.66 hrs
Average Depth at Peak Storage=3.46'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 633.79 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=426.3' Slope=0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach NDE10: N Ditch E 10

Inflow Area $=138.482 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event
Inflow $=473.98$ cfs @ 12.69 hrs , Volume= 98.523 af
Outflow $=472.42$ cfs @ 12.74 hrs , Volume $=98.523 \mathrm{af}$, Atten $=0 \%$, Lag $=2.8 \mathrm{~min}$
Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.72 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.47 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage= 47,483 cf @ 12.71 hrs
Average Depth at Peak Storage=3.47'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 632.94 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=474.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.42'

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 43
Summary for Reach NDNE01: N Ditch NE 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.87 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=4.6 \mathrm{~min}$
Peak Storage=20,591 cf @ 12.16 hrs
Average Depth at Peak Storage=2.41'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.58 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=346.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach NDNE02: N Ditch NE 2

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 3.92 fps , Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=4.6 \mathrm{~min}$
Peak Storage $=21,165$ cf @ 12.20 hrs
Average Depth at Peak Storage= 2.47'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 632.99 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=343.9' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.03'

Summary for Reach NDNE03: N Ditch NE 3

| Inflow Area $=$ | 49.337 ac, | 0.00% | Impervious, Inflow Depth $=8.53 "$ | for $100-$ Year, 24 -Hour event |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $256.36 \mathrm{cfs} @$ | 12.23 hrs , Volume $=$ | 35.073 af |
| Outflow | $=$ | $250.68 \mathrm{cfs} @$ | 12.28 hrs , Volume $=$ | 35.073 af , Atten $=2 \%$, Lag= 3.1 min |

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 3.97 fps , Min. Travel Time= 1.6 min
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=5.0 \mathrm{~min}$
Peak Storage= 23,913 cf @ 12.25 hrs
Average Depth at Peak Storage $=2.52^{\prime}$
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 634.77 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=378.5' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.14'

Summary for Reach NDNE04: N Ditch NE 4

Inflow Area	$=$	52.510 ac,	0.00%	Impervious,
Inflow	$=$	$263.82 \mathrm{cfs} @$	12.28 hrs , Volume $=$	37.329 af
Outflow	$=$	$258.24 \mathrm{cfs} @$	12.33 hrs , Volume $=$	37.329 af , Atten= 2%, Lag= 3.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.00 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.25 \mathrm{fps}$, Avg. Travel Time $=5.9 \mathrm{~min}$
Peak Storage= 28,335 cf @ 12.30 hrs
Average Depth at Peak Storage= 2.56'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.24 cfs
15.00 x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=439.0' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.32'

Summary for Reach NDNE05: N Ditch NE 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.31 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage $=34,751$ cf @ 12.35 hrs
Average Depth at Peak Storage=2.93'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.61 cfs
$15.00^{\prime} \times 4.00$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=443.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach NDNW01: N Ditch NW 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.09 \mathrm{fps}$, Min. Travel Time $=2.7 \mathrm{~min}$
Avg. Velocity $=0.55 \mathrm{fps}$, Avg. Travel Time $=10.2 \mathrm{~min}$
Peak Storage= 3,257 cf @ 12.13 hrs
Average Depth at Peak Storage= 0.56'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 785.17 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=340.7$ ' Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.57'

Summary for Reach NDNW02: N Ditch NW 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.62 fps , Min. Travel Time= 2.2 min
Avg. Velocity $=0.70 \mathrm{fps}$, Avg. Travel Time $=8.2 \mathrm{~min}$
Peak Storage= 5,121 cf @ 12.16 hrs
Average Depth at Peak Storage=0.82'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity $=785.70 \mathrm{cfs}$
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width $=47.00^{\prime}$
Length=342.4' Slope=0.0046 '/'
Inlet Invert= 0.00', Outlet Invert= -1.58'

Summary for Reach NDNW03: N Ditch NW 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.98 \mathrm{fps}$, Min. Travel Time= 2.2 min
Avg. Velocity $=0.81 \mathrm{fps}$, Avg. Travel Time $=8.1 \mathrm{~min}$
Peak Storage= 7,682 cf @ 12.19 hrs
Average Depth at Peak Storage=1.03'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 784.47 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=391.3^{\prime}$ Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.80'

Summary for Reach NDNW04: N Ditch NW 4

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.24 fps , Min. Travel Time $=2.4 \mathrm{~min}$
Avg. Velocity $=0.89 \mathrm{fps}$, Avg. Travel Time $=8.7 \mathrm{~min}$
Peak Storage= 10,953 cf @ 12.22 hrs
Average Depth at Peak Storage=1.19'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 784.06 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=465.7' Slope= 0.0046 '/'
Inlet Invert= 0.00', Outlet Invert= -2.14'

Summary for Reach NDNW05: N Ditch NW 5

Inflow Area $=$	36.777 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$189.00 \mathrm{cfs} @$	12.14 hrs, Volume $=$
Outflow	$=$	$185.85 \mathrm{cfs} @$	12.24 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.24 \mathrm{fps}$, Min. Travel Time $=1.9 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=6.1 \mathrm{~min}$
Peak Storage=20,771 cf @ 12.21 hrs
Average Depth at Peak Storage= 1.93'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity $=784.48$ cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=473.9' Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -2.18'

Summary for Reach NDSE01: N Ditch SE 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=1.84 \mathrm{fps}, \mathrm{Min}$. Travel Time $=2.9 \mathrm{~min}$
Avg. Velocity $=0.49 \mathrm{fps}$, Avg. Travel Time $=10.8$ min
Peak Storage= 3,578 cf @ 12.14 hrs
Average Depth at Peak Storage $=0.64$ '
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.88 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=316.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.95^{\prime}

Summary for Reach NDSE02: N Ditch SE 2

Inflow Area $=\quad 5.347$ ac, 0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow $=40.99 \mathrm{cfs}$ @ 12.15 hrs , Volume= 3.801 af Outflow $=40.03$ cfs @ 12.21 hrs , Volume= 3.801 af , Atten= 2%, Lag= 3.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.29 fps, Min. Travel Time $=2.3 \mathrm{~min}$
Avg. Velocity $=0.61 \mathrm{fps}$, Avg. Travel Time $=8.6 \mathrm{~min}$
Peak Storage=5,538 cf @ 12.17 hrs
Average Depth at Peak Storage=0.94'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.18 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=316.0^{\prime}$ Slope $=0.0030 ~ / / '$
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach NDSE03: N Ditch SE 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.59 fps , Min. Travel Time $=2.4 \mathrm{~min}$
Avg. Velocity $=0.70 \mathrm{fps}$, Avg. Travel Time $=8.7 \mathrm{~min}$
Peak Storage= 8,474 cf @ 12.20 hrs
Average Depth at Peak Storage=1.17'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 632.97 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 367.3^{\prime} Slope $=0.0030 \mathrm{l} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -1.10'

Summary for Reach NDSE04: N Ditch SE 4

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 2.82 fps , Min. Travel Time $=2.5 \mathrm{~min}$
Avg. Velocity $=0.77 \mathrm{fps}$, Avg. Travel Time $=9.2 \mathrm{~min}$
Peak Storage= 11,835 cf @ 12.22 hrs
Average Depth at Peak Storage=1.36'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.79 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=426.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach NDSE05: N Ditch SE 5

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=2.94 \mathrm{fps}$, Min. Travel Time $=2.7 \mathrm{~min}$
Avg. Velocity $=0.81 \mathrm{fps}$, Avg. Travel Time $=9.8 \mathrm{~min}$
Peak Storage= 14,556 cf @ 12.27 hrs
Average Depth at Peak Storage=1.47'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 632.94 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=474.2^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.42'

Summary for Reach NDSW01: N Ditch SW 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.28 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.2 \mathrm{~min}$
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=3.7 \mathrm{~min}$
Peak Storage $=15,824$ cf @ 12.17 hrs
Average Depth at Peak Storage= 2.13'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 750.26 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=316.1' Slope $=0.0042$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach NDSW02: N Ditch SW 2

Inflow Area $=$	43.693 ac,	0.00% Impervious, Inflow Depth $=8.53 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$232.76 \mathrm{cfs} @$	12.18 hrs , Volume $=$	31.061 af
Outflow	$=$	$228.07 \mathrm{cfs} @$	12.23 hrs , Volume $=$	31.061 af , Atten $=2 \%$, Lag= 2.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.35 fps , Min. Travel Time= 1.2 min
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 16,737 cf @ 12.20 hrs
Average Depth at Peak Storage=2.20'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 749.29 cfs
$15.00^{\prime} \times 4.00$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 319.3' Slope $=0.0042$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.34'

Summary for Reach NDSW03: N Ditch SW 3

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.42 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.42 \mathrm{fps}$, Avg. Travel Time $=4.3 \mathrm{~min}$
Peak Storage= 19,900 cf @ 12.24 hrs
Average Depth at Peak Storage=2.27'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 748.85 cfs
15.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value $=4.0$ '/' Top Width= 47.00'
Length $=365.0^{\prime}$ Slope $=0.0042$ '/'
Inlet Invert= 0.00', Outlet Invert=-1.53'

Summary for Reach NDSW04: N Ditch SW 4

Routing by Stor-Ind+Trans method, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.47 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.42 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 23,087 cf @ 12.29 hrs
Average Depth at Peak Storage= 2.32'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 748.60 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width $=47.00^{\prime}$
Length $=410.6^{\prime}$ Slope $=0.0042$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.72'

Summary for Reach NDSW05: N Ditch SW 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.51 fps, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=5.5 \mathrm{~min}$
Peak Storage= 26,721 cf @ 12.34 hrs
Average Depth at Peak Storage= 2.34^{\prime}
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 750.43 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=468.0' Slope $=0.0042$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.97'

Summary for Reach NDW01: N Ditch W 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.70 \mathrm{fps}$, Min. Travel Time $=2.1 \mathrm{~min}$
Avg. Velocity $=1.12 \mathrm{fps}$, Avg. Travel Time $=6.8 \mathrm{~min}$
Peak Storage= 24,436 cf @ 12.26 hrs
Average Depth at Peak Storage= 2.22'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.24 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=460.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.38'

Summary for Reach NDW02: N Ditch W 2

Inflow Area $=$	42.830 ac,	0.00% Impervious, Inflow Depth $=8.55^{\prime \prime}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$210.83 \mathrm{cfs} @$	12.28 hrs, Volume $=$	30.499 af
Outflow	$=$	$208.82 \mathrm{cfs} @$	12.35 hrs , Volume $=$	30.499 af , Atten= 1%, Lag= 3.9 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=3.77 \mathrm{fps}$, Min. Travel Time $=2.0 \mathrm{~min}$
Avg. Velocity $=1.13 \mathrm{fps}$, Avg. Travel Time $=6.7 \mathrm{~min}$
Peak Storage= 25,075 cf @ 12.31 hrs
Average Depth at Peak Storage= 2.29'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.17 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=452.4' Slope= 0.0030 '/'
Inlet Invert $=0.00^{\prime}$, Outlet Invert= -1.36'

Summary for Reach NDW03: N Ditch W 3

Inflow Area $=45.982$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event
Inflow $=220.07 \mathrm{cfs} @ 12.34 \mathrm{hrs}$, Volume $=32.740$ af
Outflow = $219.30 \mathrm{cfs} @ 12.38 \mathrm{hrs}$, Volume $=32.740 \mathrm{af}$, Atten= 0%, Lag= 2.3 min
Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.82 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.15 \mathrm{fps}$, Avg. Travel Time $=4.2 \mathrm{~min}$
Peak Storage= 16,658 cf @ 12.36 hrs
Average Depth at Peak Storage=2.35'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 633.52 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=290.0^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.87'

Summary for Reach NDW04: N Ditch W 4

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.85 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.16 \mathrm{fps}$, Avg. Travel Time $=4.2 \mathrm{~min}$
Peak Storage= 17,064 cf @ 12.39 hrs
Average Depth at Peak Storage=2.39'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.52 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=290.0^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.87'

Summary for Reach NDW05: N Ditch W 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.39 \mathrm{fps}$, Min. Travel Time $=1.1 \mathrm{~min}$
Avg. Velocity $=1.38 \mathrm{fps}$, Avg. Travel Time $=3.5 \mathrm{~min}$
Peak Storage= 23,892 cf @ 12.39 hrs
Average Depth at Peak Storage=3.02'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 635.18 cfs
15.00' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=291.8' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.88^{\prime}

Summary for Reach NDW06: N Ditch W 6

Inflow Area $=$	87.478 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$366.54 \mathrm{cfs} @$	12.41 hrs , Volume $=$	62.239 af
Outflow	$=$	$365.80 \mathrm{cfs} @$	12.44 hrs , Volume $=$	62.239 af , Atten $=0 \%$, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.41 \mathrm{fps}$, Min. Travel Time= 1.1 min
Avg. Velocity $=1.38 \mathrm{fps}$, Avg. Travel Time $=3.5 \mathrm{~min}$
Peak Storage= 23,935 cf @ 12.42 hrs
Average Depth at Peak Storage= 3.05'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 635.05 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=288.6^{\prime}$ Slope $=0.0030 \mathrm{I} /$
Inlet Invert= 0.00', Outlet Invert= -0.87'

Summary for Reach NDW07: N Ditch W 7

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.42 fps , Min. Travel Time= 1.1 min
Avg. Velocity $=1.38 \mathrm{fps}$, Avg. Travel Time $=3.5 \mathrm{~min}$
Peak Storage $=24,405$ cf @ 12.45 hrs
Average Depth at Peak Storage=3.08'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.41 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=290.1^{\prime}$ Slope $=0.0030 \mathrm{l} /$
Inlet Invert= 0.00', Outlet Invert= -0.87'

Summary for Reach NDW08: N Ditch W 8

Inflow Area	$=$	93.424 ac,	0.00% Impervious, Inflow Depth $=8.54$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$380.18 \mathrm{cfs} @$	12.47 hrs, Volume $=$	66.466 af
Outflow	$=$	$379.21 \mathrm{cfs} @$	12.51 hrs, Volume $=$	66.466 af , Atten= 0%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.44 fps, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=4.5 \mathrm{~min}$
Peak Storage= 31,378 cf @ 12.48 hrs
Average Depth at Peak Storage=3.11'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.71 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width=47.00'
Length $=367.6^{\prime}$ Slope $=0.00301 /$
Inlet Invert= 0.00', Outlet Invert= -1.10'

Summary for Reach NDW09: N Ditch W 9

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.47 fps , Min. Travel Time= 1.5 min
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=5.0 \mathrm{~min}$
Peak Storage= 35,213 cf @ 12.52 hrs
Average Depth at Peak Storage=3.13'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 634.68 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=408.5^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.23'

Summary for Reach NDW10: N Ditch W 10

Inflow Area $=99.720$ ac, 0.00% Impervious, Inflow Depth $=8.54^{\prime \prime}$ for 100-Year, 24 -Hour event
Inflow $=390.70$ cfs @ 12.54 hrs , Volume= $\quad 70.971$ af

Outflow = $389.77 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=\quad 70.971 \mathrm{af}$, Atten $=0 \%$, Lag $=2.8 \mathrm{~min}$
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.48 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.35 \mathrm{fps}$, Avg. Travel Time $=5.7 \mathrm{~min}$
Peak Storage $=40,470$ cf @ 12.56 hrs
Average Depth at Peak Storage= 3.15'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.24 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=465.6^{\prime}$ Slope $=0.0030 \quad / /$
Inlet Invert= 0.00', Outlet Invert= -1.40'

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 58

Summary for Reach NUEOC: North Unit East Outlet Culvert

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 11.71 fps , Min. Travel Time= 0.1 min
Avg. Velocity $=3.26 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage=3,414 cf @ 12.43 hrs
Average Depth at Peak Storage= 3.25'
Bank-Full Depth= 4.00' Flow Area= 60.0 sf, Capacity= 551.82 cfs
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.012$
Length $=70.0^{\prime}$ Slope $=0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -0.21'

Summary for Reach NUWOC: North Unit West Outlet Culvert

Inflow Area $=174.093 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24-Hour event Inflow $=684.93 \mathrm{cfs} @ 12.41 \mathrm{hrs}$, Volume $=123.871 \mathrm{af}$
Outflow = 684.83 cfs @ 12.41 hrs , Volume $=123.871 \mathrm{af}$, Atten= 0%, Lag= 0.2 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 13.16 fps , Min. Travel Time= 0.1 min
Avg. Velocity $=3.53 \mathrm{fps}$, Avg. Travel Time $=0.3 \mathrm{~min}$
Peak Storage= 3,643 cf @ 12.41 hrs
Average Depth at Peak Storage=3.47'
Bank-Full Depth= 4.00' Flow Area= 60.0 sf, Capacity= 601.98 cfs
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.011$
Length= 70.0' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.21^{\prime}

Summary for Reach SBEIC: South Basin East Inlet Culverts

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=8.22 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.45 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 8,600 cf @ 12.72 hrs
Average Depth at Peak Storage= 2.73'
Bank-Full Depth=3.00' Flow Area= 150.0 sf, Capacity= 928.24 cfs
A factor of 5.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$\mathrm{n}=0.012$
Length=63.0' Slope= 0.0021 '/'
Inlet Invert= 0.00', Outlet Invert= -0.13'

Summary for Reach SBWIC: South Basin West Inlet Culvert 1

Inflow Area $=331.471 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54^{\prime \prime}$ for 100 -Year, 24 -Hour event
Inflow = 1,025.34 cfs @ 12.84 hrs , Volume= 235.802 af
Outflow = 1,025.26 cfs @ 12.84 hrs , Volume $=235.802 \mathrm{af}$, Atten= 0\%, Lag= 0.2 min
Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=8.00 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.34 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 8,078 cf @ 12.84 hrs
Average Depth at Peak Storage $=2.56^{\prime}$
Bank-Full Depth= 3.00' Flow Area= 150.0 sf, Capacity= 928.24 cfs
A factor of 5.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$\mathrm{n}=0.012$
Length=63.0' Slope= $0.0021 \mathrm{I} / \mathrm{l}$
Inlet Invert= 0.00', Outlet Invert= -0.13'

Summary for Reach SBWIC2: South Basin West Inlet Culvert 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=6.96 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.90 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage= 2,711 cf @ 12.29 hrs
Average Depth at Peak Storage=2.02'
Bank-Full Depth=3.00' Flow Area= 60.0 sf, Capacity= 360.04 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$n=0.012$
Length=67.0' Slope $=0.0019$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.13'

Summary for Reach SDE01: S Ditch E 1

Inflow Area =	269.395 ac,	0.00\% Impervious,	Depth $=8.54$ for
Inflow	932.17 cfs @	12.43 hrs, Volume=	191.679 af
Outflow	930.37 cfs @	12.47 hrs , Volume=	191.679 af, Atten $=0 \%$, Lag $=2.3 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.29 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.47 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 75,336 cf @ 12.44 hrs
Average Depth at Peak Storage=3.39'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= $1,254.53$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=428.5$ ' Slope $=0.0030 \mathrm{I} /$
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDE02: S Ditch E 2

Inflow Area $=272.868$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event
Inflow $=938.74$ cfs @ 12.46 hrs, Volume $=194.149$ af

Outflow = 936.92 cfs @ 12.50 hrs , Volume $=194.149 \mathrm{af}$, Atten $=0 \%$, Lag= 2.3 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.30 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=4.9 \mathrm{~min}$
Peak Storage= 77,563 cf @ 12.48 hrs
Average Depth at Peak Storage= 3.40^{\prime}
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.91 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= $3.04 .0^{\prime \prime /} \quad$ Top Width= 68.00'
Length $=438.9$ ' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.32'

Summary for Reach SDE03: S Ditch E 3

```
Inflow Area = 276.240 ac, 0.00% Impervious, Inflow Depth = 8.54" for 100-Year, 24-Hour event
Inflow = 944.14 cfs @ 12.50 hrs, Volume= 196.545 af
Outflow = 942.88 cfs @ 12.53 hrs, Volume= 196.545 af, Atten= 0%, Lag= 2.0 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.31 fps , Min. Travel Time= 1.2 min
Avg. Velocity \(=1.49 \mathrm{fps}\), Avg. Travel Time \(=4.3 \mathrm{~min}\)
Peak Storage=68,081 cf @ 12.51 hrs
Average Depth at Peak Storage= 3.42'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,252.39 cfs
40.00' x 4.00' deep channel, \(\mathrm{n}=0.030\)
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=383.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'
```


Summary for Reach SDE04: S Ditch E 4

Inflow Area $=$	279.677 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, $24-$ Hour event		
Inflow	$=$	$949.34 \mathrm{cfs} @$	12.53 hrs, Volume $=$	198.989 af
Outflow	$=$	$948.08 \mathrm{cfs} @$	12.57 hrs, Volume $=$	198.989 af , Atten $=0 \%$, Lag $=2.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.32 fps , Min. Travel Time= 1.2 min
Avg. Velocity $=1.50 \mathrm{fps}$, Avg. Travel Time $=4.3 \mathrm{~min}$
Peak Storage=68,830 cf @ 12.55 hrs
Average Depth at Peak Storage=3.43'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.09 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length= 386.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE05: S Ditch E 5

Inflow Area $=331.101 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=1,060.66$ cfs @ 12.53 hrs , Volume= 235.545 af Outflow $=1,059.57$ cfs @ 12.57 hrs, Volume $=235.545 \mathrm{af}$, Atten= 0%, Lag= 2.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.50 fps , Min. Travel Time= 1.2 min
Avg. Velocity $=1.60 \mathrm{fps}$, Avg. Travel Time $=4.0 \mathrm{~min}$
Peak Storage= 74,683 cf @ 12.55 hrs
Average Depth at Peak Storage=3.65'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity $=1,250.67$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=387.7' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE06: S Ditch E 6
Inflow Area $=334.342 \mathrm{ac}, 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=1,064.82$ cfs @ 12.56 hrs, Volume $=237.849$ af
Outflow $=1,063.79 \mathrm{cfs} @ 12.60 \mathrm{hrs}$, Volume= 237.849 af , Atten= 0\%, Lag= 1.9 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.52 fps , Min. Travel Time= 1.2 min
Avg. Velocity $=1.61 \mathrm{fps}$, Avg. Travel Time $=4.0 \mathrm{~min}$
Peak Storage $=74,291$ cf @ 12.58 hrs
Average Depth at Peak Storage=3.65'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,254.39 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=385.4^{\prime}$ Slope $=0.0030 ~ / / '$
inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE07: S Ditch E 7

```
Inflow Area = 337.906 ac, 0.00% Impervious, Inflow Depth = 8.54" for 100-Year, 24-Hour event
Inflow = 1,068.93 cfs @ 12.59 hrs, Volume= 240.383 af
Outflow = 1,067.94 cfs @ 12.63 hrs,Volume= 240.383 af, Atten= 0%, Lag= 1.9 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 5.52 fps , Min. Travel Time \(=1.2 \mathrm{~min}\) Avg. Velocity \(=1.61 \mathrm{fps}\), Avg. Travel Time \(=4.0 \mathrm{~min}\)
Peak Storage= 74,698 cf @ 12.61 hrs
Average Depth at Peak Storage= 3.66'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.09 cfs
40.00' x 4.00' deep channel, \(\mathrm{n}=0.030\)
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=386.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'
```


Summary for Reach SDE08: S Ditch E 8

Inflow Area $=$	341.444 ac,	0.00%	Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$1,072.51 \mathrm{cfs} @$	12.62 hrs, Volume	242.897 af
Outflow	$=$	$1,071.58 \mathrm{cfs} @$	12.66 hrs, Volume $=$	242.897 af , Atten $=0 \%$, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.53 fps , Min. Travel Time $=1.1 \mathrm{~min}$
Avg. Velocity $=1.62 \mathrm{fps}$, Avg. Travel Time $=3.9 \mathrm{~min}$
Peak Storage= 73,442 cf @ 12.64 hrs
Average Depth at Peak Storage= 3.67'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.99 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=379.0^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.14'

Summary for Reach SDE09: S Ditch E 9

Inflow Area $=345.191$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=1,076.03 \mathrm{cfs}$ @ 12.66 hrs , Volume= 245.561 af Outflow = 1,074.87 cfs @ 12.69 hrs , Volume= 245.560 af , Atten= 0\%, Lag= 2.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.53 fps , Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.62 \mathrm{fps}$, Avg. Travel Time $=4.4 \mathrm{~min}$
Peak Storage= 83,683 cf @ 12.67 hrs
Average Depth at Peak Storage=3.68'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,251.76 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=430.4' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDE10: S Ditch E 10

Inflow Area $=348.276$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=1,078.25$ cfs @ 12.69 hrs, Volume $=247.753$ af Outflow $=1,076.83 \mathrm{cfs} @ 12.73 \mathrm{hrs}$, Volume $=247.751 \mathrm{af}$, Atten $=0 \%$, Lag $=2.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.53 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.63 \mathrm{fps}$, Avg. Travel Time $=4.9 \mathrm{~min}$
Peak Storage= 93,196 cf @ 12.71 hrs
Average Depth at Peak Storage=3.68'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,250.20 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 4.0 '/' Top Width=68.00'
Length $=478.3^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.43'

Summary for Reach SDNE01: S Ditch NE 1

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.56 \mathrm{fps}$, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.05 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage= 23,572 cf @ 12.17 hrs
Average Depth at Peak Storage=1.72'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,250.37 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=297.6' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.89'

Summary for Reach SDNE02: S Ditch NE 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.61 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.05 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage= 24,042 cf @ 12.20 hrs
Average Depth at Peak Storage $=1.76$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,252.69 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=296.5' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.89^{\prime}

Summary for Reach SDNE03: S Ditch NE 3

Inflow Area $=62.375 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow $=309.54$ cfs @ 12.22 hrs, Volume $=44.342$ af Outflow = 303.61 cfs @ 12.27 hrs , Volume= 44.342 af , Atten= 2%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.65 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.04 \mathrm{fps}$, Avg. Travel Time $=6.3 \mathrm{~min}$
Peak Storage= 32,690 cf @ 12.24 hrs
Average Depth at Peak Storage=1.79'
Bank-Full Depth=4.00' Flow Area=216.0 sf, Capacity= $1,251.91$ cfs
$40.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=393.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.18'

Summary for Reach SDNE04: S Ditch NE 4

| Inflow Area $=$ | 65.752 ac, | 0.00% Impervious, Inflow Depth $=8.53 "$ for $100-$ Year, 24 -Hour event | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Inflow | $=$ | $317.67 \mathrm{cfs} @$ | 12.27 hrs, Volume $=$ | 46.743 af |
| Outflow | $=$ | $311.25 \mathrm{cfs} @$ | 12.33 hrs , Volume $=$ | 46.743 af , Atten $=2 \%$, Lag= 3.4 min |

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.68 fps , Min. Travel Time $=2.0 \mathrm{~min}$
Avg. Velocity $=1.03 \mathrm{fps}$, Avg. Travel Time $=7.2 \mathrm{~min}$
Peak Storage= 37,622 cf @ 12.30 hrs
Average Depth at Peak Storage=1.82'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,249.99 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 //' Top Width=68.00'
Length=445.0' Slope= $0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach SDNE05: S Ditch NE 5

Inflow Area $=90.778 \mathrm{ac}, 0.00 \%$ Impervious, Inflow Depth $=8.53$ " for 100-Year, 24 -Hour event Inflow $=404.91$ cfs @ 12.32 hrs, Volume $=\quad 64.559 \mathrm{af}$ Outflow $=400.75 \mathrm{cfs}$ @ 12.37 hrs , Volume $=64.559 \mathrm{af}$, Atten= 1%, Lag= 3.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.02 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.13 \mathrm{fps}$, Avg. Travel Time $=6.5 \mathrm{~min}$
Peak Storage $=44,203$ cf @ 12.34 hrs
Average Depth at Peak Storage= 2.11'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity $=1,252.53 \mathrm{cfs}$
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 4.0 '/' Top Width= 68.00'
Length=443.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach SDNW01: S Ditch NW 1

Inflow Area $=$	13.770 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$	for $100-$ Year, 24 -Hour event	
Inflow	$=$	$59.03 \mathrm{cfs} @$	12.47 hrs, Volume $=$	9.789 af
Outflow	$=$	$58.82 \mathrm{cfs} @$	12.52 hrs , Volume $=$	9.789 af , Atten $=0 \%$, Lag= 3.2 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=2.13 \mathrm{fps}$, Min. Travel Time $=2.3 \mathrm{~min}$
Avg. Velocity $=0.66 \mathrm{fps}$, Avg. Travel Time $=7.5 \mathrm{~min}$
Peak Storage= 8,170 cf @ 12.48 hrs
Average Depth at Peak Storage $=0.65^{\prime}$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,355.75 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=295.8^{\prime}$ Slope $=0.0035$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDNW02: S Ditch NW 2

Inflow Area $=$	16.241 ac,	0.00% Impervious, Inflow Depth $=8.53 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$63.96 \mathrm{cfs} @$	12.49 hrs , Volume $=$	11.546 af
Outflow	$=$	$63.81 \mathrm{cfs} @$	12.55 hrs , Volume $=$	11.546 af , Atten= 0%, Lag= 3.7 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.19 \mathrm{fps}, \mathrm{Min}$. Travel Time $=2.3 \mathrm{~min}$
Avg. Velocity $=0.69 \mathrm{fps}$, Avg. Travel Time $=7.2 \mathrm{~min}$
Peak Storage= 8,648 cf @ 12.51 hrs
Average Depth at Peak Storage= 0.69^{\prime}
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= $1,352.78$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 $4.0{ }^{\prime \prime} /{ }^{\prime \prime}$ Top Width=68.00'
Length=297.1' Slope= $0.0035{ }^{\prime} / \prime$
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDNW03: S Ditch NW 3

Inflow Area	$=$	19.427 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$	for $100-$ Year, 24 -Hour event
Inflow	$=$	$77.56 \mathrm{cfs} @$	12.18 hrs , Volume	13.811 af
Outflow	$=$	$76.49 \mathrm{cfs} @$	12.26 hrs , Volume $=$	13.811 af , Atten= 1%, Lag= 4.6 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=2.35 \mathrm{fps}$, Min. Travel Time $=2.7 \mathrm{~min}$
Avg. Velocity $=0.72 \mathrm{fps}$, Avg. Travel Time $=8.9 \mathrm{~min}$
Peak Storage= 12,432 cf @ 12.22 hrs
Average Depth at Peak Storage= 0.76'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,355.08 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=381.5' Slope= 0.0035 '/'
Inlet Invert= 0.00', Outlet Invert= -1.34'

Summary for Reach SDNW04: S Ditch NW 4

Inflow Area $=$	22.869 ac,	0.00% Impervious, Inflow Depth $=8.53 "$	for $100-$ Year, 24 -Hour event
Inflow	$=$	$92.29 \mathrm{cfs} @$	12.23 hrs, Volume $=$
Outflow	$=$	$91.44 \mathrm{cfs} @$	12.31 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.51 fps , Min. Travel Time $=3.0 \mathrm{~min}$
Avg. Velocity $=0.74 \mathrm{fps}$, Avg. Travel Time $=10.0 \mathrm{~min}$
Peak Storage= 16,259 cf @ 12.26 hrs
Average Depth at Peak Storage $=0.85^{\prime}$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,353.01 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length $=445.5^{\prime}$ Slope $=0.0035{ }^{\prime} / \prime$
Inlet Invert= 0.00', Outlet Invert= -1.56'

Summary for Reach SDNW05: S Ditch NW 5

Inflow Area $=$	47.613 ac,	0.00% Impervious, Inflow Depth $=8.54^{\prime \prime}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$249.02 \mathrm{cfs} @$	12.16 hrs, Volume=	33.874 af
Outflow	$=$	$241.81 \mathrm{cfs} @$	12.22 hrs , Volume=	33.874 af , Atten=3\%, Lag= 3.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.55 \mathrm{fps}$, Min. Travel Time $=2.1 \mathrm{~min}$
Avg. Velocity $=0.96 \mathrm{fps}$, Avg. Travel Time $=7.7 \mathrm{~min}$
Peak Storage= 30,387 cf @ 12.18 hrs
Average Depth at Peak Storage=1.50'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,352.10 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length=446.1' Slope= 0.0035 '/'
Inlet Invert= 0.00', Outlet Invert= -1.56'

Summary for Reach SDSE01: S Ditch SE 1

Inflow Area $=$	38.285 ac,	0.00% Impervious, Inflow Depth $=8.53 \mathrm{ln}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$248.05 \mathrm{cfs} @$	12.16 hrs, Volume $=$	27.216 af
Outflow	$=$	$244.21 \mathrm{cfs} @$	12.19 hrs , Volume=	27.216 af , Atten $=2 \%$, Lag $=2.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.12 fps , Min. Travel Time= 1.1 min
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=3.6 \mathrm{~min}$
Peak Storage= 16,776 cf @ 12.17 hrs
Average Depth at Peak Storage= 2.41^{\prime}
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 674.14 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=282.6' Slope= 0.0034 '/'
Inlet Invert= 0.00', Outlet Invert= -0.96'

Summary for Reach SDSE02: S Ditch SE 2

Inflow Area $=$	2.524 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$21.42 \mathrm{cfs} @$	12.11 hrs , Volume $=$	1.794 af
Outflow	$=$	$20.61 \mathrm{cfs} @$	12.18 hrs , Volume $=$	1.794 af , Atten $=4 \%$, Lag= 4.0 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 1.91 fps , Min. Travel Time= 2.4 min
Avg. Velocity $=0.51 \mathrm{fps}$, Avg. Travel Time $=9.2 \mathrm{~min}$
Peak Storage= 3,027 cf @ 12.14 hrs
Average Depth at Peak Storage=0.62'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 673.60 cfs
15.00 ' $\times 4.00$ ' deep channel, $n=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=280.1' Slope $=0.0034$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.95^{\prime}

Summary for Reach SDSE03: S Ditch SE 3

Inflow	3.409	0.00\% Impervious,	" ${ }^{\prime \prime}$ for 100-Year, 24-Hour event
Inflow	28.93 cfs @	12.11 hrs , Volume=	2.423 af
Outflow	27.22 cfs @	12.20 hrs , Volume=	2.423 af, Atten= 6\%, Lag= 5.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.01 fps , Min. Travel Time= 3.2 min
Avg. Velocity $=0.53 \mathrm{fps}$, Avg. Travel Time $=12.1 \mathrm{~min}$
Peak Storage= 5,201 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.75'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.05 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=383.9^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'

Summary for Reach SDSE04: S Ditch SE 4

Inflow Area = Inflow = Outflow =
6.949 ac, 0.00% Impervious, Inflow Depth = 8.53" for 100-Year, 24 -Hour event 51.93 cfs @ 12.15 hrs, Volume= 4.940 af
50.28 cfs @ 12.23 hrs , Volume=
4.940 af, Atten $=3 \%$, Lag $=4.9 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.46 \mathrm{fps}$, Min. Travel Time $=2.9 \mathrm{~min}$
Avg. Velocity $=0.65 \mathrm{fps}$, Avg. Travel Time $=11.0 \mathrm{~min}$
Peak Storage= 8,817 cf @ 12.18 hrs
Average Depth at Peak Storage=1.06'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.15 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=430.5$ ' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDSE05: S Ditch SE 5

Inflow Area $=\quad 9.803 \mathrm{ac}, 0.00 \%$ Impervious, Inflow Depth $=8.57^{\prime \prime}$ for 100-Year, 24-Hour event Inflow = 65.54 cfs @ 12.20 hrs, Volume= 6.998 af Outflow =

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 2.65 fps , Min. Travel Time $=3.0 \mathrm{~min}$ Avg. Velocity $=0.71 \mathrm{fps}$, Avg. Travel Time= 11.2 min

Peak Storage $=11,615$ cf @ 12.24 hrs
Average Depth at Peak Storage= 1.22'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 632.43 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=478.3' Slope= 0.0030 ' $/$ '
Inlet Invert= 0.00', Outlet Invert= -1.43'

Summary for Reach SDSW01: S Ditch SW 1

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.17 fps , Min. Travel Time= 1.1 min
Avg. Velocity $=1.32 \mathrm{fps}$, Avg. Travel Time $=3.5 \mathrm{~min}$
Peak Storage= 17,224 cf @ 12.20 hrs
Average Depth at Peak Storage=2.47'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 673.84 cfs
$15.00^{\prime} \times 4.00$ ' deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=279.9$ ' Slope $=0.00341 /$
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach SDSW02: S Ditch SW 2

Summary for Reach SDSW03: S Ditch SW 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.28 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.33 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage= 24,823 cf @ 12.27 hrs
Average Depth at Peak Storage=2.59'
Bank-Full Depth $=4.00$ Flow Area= 124.0 sf, Capacity $=673.78$ cfs
15.00' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=377.2' Slope $=0.0034$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach SDSW04: S Ditch SW 4

Inflow Area $=331.471$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=1,026.27 \mathrm{cfs}$ @ 12.80 hrs , Volume $=235.804 \mathrm{af}$
Outflow = $1,025.34$ cfs @ 12.84 hrs , Volume $=235.802 \mathrm{af}$, Atten= 0\%, Lag= 2.3 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 5.04 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 87,706 cf @ 12.81 hrs
Average Depth at Peak Storage=3.81'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,117.74 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=431.0' Slope=0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.03'

Summary for Reach SDSW05: S Ditch SW 5

Inflow Area $=$	327.503 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$1,023.64 \mathrm{cfs} @$	12.76 hrs , Volume $=$	232.984 af
Outflow	$=$	$1,022.39 \mathrm{cfs} @$	12.80 hrs , Volume $=$	232.982 af , Atten= 0%, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.05 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage= 96,855 cf @ 12.77 hrs
Average Depth at Peak Storage $=3.80^{\prime}$
Bank-Full Depth=4.00' Flow Area=216.0 sf, Capacity= 1,121.49 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=478.0' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'

Summary for Reach SDW01: S Ditch W 1

Inflow Area $=$	224.716 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$865.46 \mathrm{cfs} @$	12.41 hrs, Volume $=$
Outflow	$=$	$861.85 \mathrm{cfs} @$	12.46 hrs, Volume $=$
	159.916 af		

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.78 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.27 \mathrm{fps}$, Avg. Travel Time $=5.7 \mathrm{~min}$
Peak Storage= 78,449 cf @ 12.43 hrs
Average Depth at Peak Storage=3.46'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,118.49 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 //' Top Width= 68.00'
Length= 434.6' Slope= $0.0024{ }^{\prime} / \prime$
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDW02: S Ditch W 2

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.79 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.28 \mathrm{fps}$, Avg. Travel Time $=5.6 \mathrm{~min}$
Peak Storage= 78,644 cf @ 12.47 hrs
Average Depth at Peak Storage= 3.47'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,119.27 cfs
40.00' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=434.0' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDW03: S Ditch W 3

Inflow Area $=231.579$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=874.57$ cfs @ 12.50 hrs, Volume $=164.794$ af Outflow $=872.35 \mathrm{cfs} @ 12.54 \mathrm{hrs}$, Volume= 164.794 af , Atten= 0%, Lag= 2.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.80 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 67,839 cf @ 12.51 hrs
Average Depth at Peak Storage=3.48'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=216.0$ sf, Capacity $=1,122.22$ cfs
$40.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=373.6^{\prime}$ Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.90'

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Reach SDW04: S Ditch W 4

Inflow Area $=$	234.966 ac,	0.00% Impervious, Inflow Depth $=8.54$ for 100 -Year, 24 -Hour event		
Inflow	$=$	$878.69 \mathrm{cfs} @$	12.53 hrs , Volume	167.203 af
Outflow	$=$	$876.60 \mathrm{cfs} @$	12.57 hrs , Volume=	167.203 af , Atten= 0%, Lag= 2.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.81 fps , Min. Travel Time= 1.3 min
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 68,161 cf @ 12.55 hrs
Average Depth at Peak Storage=3.49'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,121.62 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 4.0 '/' Top Width= 68.00'
Length $=374.0^{\prime}$ Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.90^{\prime}

Summary for Reach SDW05: S Ditch W 5

Inflow Area $=284.927$ ac, 0.00% Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=982.32$ cfs @ 12.55 hrs, Volume $=202.719$ af Outflow $=980.53$ cfs @ 12.58 hrs , Volume $=202.719 \mathrm{af}$, Atten= 0\%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.98 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.40 \mathrm{fps}$, Avg. Travel Time $=4.5 \mathrm{~min}$
Peak Storage= 74,424 cf @ 12.56 hrs
Average Depth at Peak Storage=3.71'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity=1,121.70 cfs
$40.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length= 378.1' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.91'

Pescadito Perimeter

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD(8) $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Reach SDW06: S Ditch W 6

Inflow Area $=288.113 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24-Hour event Inflow $=985.33$ cfs @ 12.58 hrs , Volume= 204.984 af
Outflow = 983.81 cfs @ 12.62 hrs, Volume $=204.984$ af, Atten= 0\%, Lag= 2.0 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.99 \mathrm{fps}$, Min. Travel Time $=1.2 \mathrm{~min}$
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=4.4 \mathrm{~min}$
Peak Storage= 73,037 cf @ 12.59 hrs
Average Depth at Peak Storage $=3.72^{\prime}$
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity=1,121.23 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=370.1' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.89'

Summary for Reach SDW07: S Ditch W 7

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $4.99 \mathrm{fps}, \mathrm{Min}$. Travel Time= 1.3 min
Avg. Velocity $=1.41 \mathrm{fps}$, Avg. Travel Time $=4.4 \mathrm{~min}$
Peak Storage= 74,118 cf @ 12.63 hrs
Average Depth at Peak Storage=3.73'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,120.72 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=374.6$ ' Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.90'

Summary for Reach SDW08: S Ditch W 8

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=5.00 \mathrm{fps}$, Min. Travel Time= 1.2 min
Avg. Velocity $=1.42 \mathrm{fps}$, Avg. Travel Time $=4.4 \mathrm{~min}$
Peak Storage= 73,873 cf @ 12.66 hrs
Average Depth at Peak Storage=3.73'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,122.97 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 $4.01 /{ }^{\prime \prime}$ Top Width=68.00'
Length=373.1' Slope=0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.90'

Summary for Reach SDW09: S Ditch W 9
Inflow Area $=299.072 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.54$ " for 100-Year, 24 -Hour event Inflow $=994.52$ cfs @ 12.68 hrs , Volume $=\quad 212.774$ af
Outflow = 992.85 cfs @ 12.72 hrs , Volume $=212.774 \mathrm{af}$, Atten= 0\%, Lag= 2.4 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.99 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.42 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage= 88,241 cf @ 12.70 hrs
Average Depth at Peak Storage=3.75'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,117.93 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=443.4' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert=-1.06'

Summary for Reach SDW10: S Ditch W 10

Inflo	32	0.0	nflow Depth = 8.54" for 100-Year, 24 -Hour event
Inflow	1,021.89 cfs @	12.72 hrs , Volume=	230.724 af
Outflow	1,020.41 cfs @	12.76 hrs, Volume=	230.723 af, Atten= 0\%, Lag= 2.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.05 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=5.5 \mathrm{~min}$
Peak Storage= 99,093 cf @ 12.73 hrs
Average Depth at Peak Storage= 3.80'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,122.14 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=489.9' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.18'

Summary for Reach SUEIC: South Unit East Inlet Culvert

Inflow Area $=$	176.097 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, $24-$ Hour event		
Inflow	$=$	$570.62 \mathrm{cfs} @$	12.49 hrs, Volume $=$	125.303 af
Outflow	$=$	$570.57 \mathrm{cfs} @$	12.49 hrs , Volume $=$	125.303 af , Atten $=0 \%$, Lag $=0.2 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=9.30 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.56 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 4,293 cf @ 12.49 hrs
Average Depth at Peak Storage= 2.04'
Bank-Full Depth=4.00' Flow Area= 120.0 sf, Capacity= 1,103.63 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.012$
Length= 70.0' Slope $=0.0030$ '/'

Inlet Invert= 0.00', Outlet Invert= - 0.21^{\prime}

Summary for Reach SUWIC: South Unit West Inlet Culvert

Inflow Area $=$	174.503 ac,	0.00% Impervious, Inflow Depth $=8.54 "$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$685.13 \mathrm{cfs} @$	12.43 hrs , Volume	124.166 af
Outflow	$=$	$685.01 \mathrm{cfs} @$	12.43 hrs , Volume=	124.166 af , Atten= 0%, Lag= 0.2 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=9.90 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.61 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 4,843 cf @ 12.43 hrs
Average Depth at Peak Storage=2.31'
Bank-Full Depth=4.00' Flow Area= 120.0 sf, Capacity= 1,103.63 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.012$
Length= 70.0' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.21'

Summary for Reach WMC: West Middle Channel

Inflow Area $=$	174.503 ac,	0.00% Impervious, Inflow Depth $=8.54^{\prime \prime} \quad$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$685.61 \mathrm{cfs} @$	12.41 hrs , Volume $=$	124.166 af
Outflow $=$	$685.13 \mathrm{cfs} @$	12.43 hrs , Volume $=$	124.166 af , Atten= 0%, Lag= 1.1 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.93 \mathrm{fps}$, Min. Travel Time $=0.6 \mathrm{~min}$
Avg. Velocity $=1.32 \mathrm{fps}$, Avg. Travel Time $=2.3 \mathrm{~min}$
Peak Storage= 25,723 cf @ 12.42 hrs
Average Depth at Peak Storage= 3.05'
Bank-Full Depth=4.00' Flow Area= 196.0 sf, Capacity= $1,124.79 \mathrm{cfs}$
35.00 x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 63.00'
Length=185.0' Slope $=0.0030 \quad / /$
Inlet Invert= 0.00', Outlet Invert= -0.56'

Summary for Pond PSDB: South Detention Basin

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=538.47' @ 14.01 hrs Surf.Area= 1,988,335 sf Storage= $10,488,455$ cf
Plug-Flow detention time $=223.2 \mathrm{~min}$ calculated for 567.540 af (98% of inflow)
Center-of-Mass det. time $=209.5 \mathrm{~min}(1,046.1-836.6)$

Primary OutFlow Max=717.42 cfs @ 14.01 hrs HW=538.47' (Free Discharge)
-1=Culvert (Inlet Controls $717.42 \mathrm{cfs} @ 8.97 \mathrm{fps}$)
Secondary OutFlow Max=104.58 cfs @ 14.01 hrs HW=538.47' (Free Discharge)
—2=Culvert (Barrel Controls 104.58 cfs @ 4.41 fps)

Pescadito Perimeter
 Prepared by CB\&I Environmental and Infrastructure, Inc. HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
 Summary for Link A: Watershed A

Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Printed 4/16/2015
Page 83

Summary for Link B: Watershed B

```
Inflow Area = 41.229 ac, 0.00% Impervious, Inflow Depth = 8.53" for 100-Year, 24-Hour event
Inflow = 217.89 cfs @ 12.14 hrs, Volume= 29.310 af
Primary = 217.89 cfs @ 12.14 hrs, Volume= 29.310 af, Atten=0%, Lag=0.0 min
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
100-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito Landfill\Design\Stormwater (Plan B)\Text an
```


Summary for Link C: Watershed C

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:\Projects\20131Pescadito LandfilllDesign\Stormwater (Plan B)\Text an

Summary for Link E: Watershed E

Inflow Area $=$	21.544 ac,	0.00% Impervious, Inflow Depth $=8.53 " \quad$ for $100-$ Year, 24 -Hour event	
Inflow	$=$	$99.44 \mathrm{cfs} @$	12.15 hrs, Volume $=$
Primary	$=$	$99.44 \mathrm{cfs} @$	12.15 hrs, Volume $=$

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:IProjects\2013IPescadito Landfill 1 Design\Stormwater (Plan B)\Text an

Summary for Link F: Watershed F

Inflow Area $=$	38.300 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$ for $100-$ Year, 24 -Hour event		
Inflow	$=$	$199.49 \mathrm{cfs} @$	12.15 hrs, Volume $=$	27.227 af
Primary	$=$	$199.49 \mathrm{cfs} @$	12.15 hrs , Volume $=$	27.227 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito LandfilllDesign\Stormwater (Plan B)\Text an

Summary for Link G: Watershed G

Inflow Area $=21.128 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53^{\prime \prime}$ for 100-Year, 24 -Hour event Inflow $=94.50 \mathrm{cfs}$ @ 12.16 hrs , Volume= $\quad 15.020$ af Primary $=94.50$ cfs @ 12.16 hrs , Volume $=15.020 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito Landfill\Design\Stormwater (Plan B)\Text an

Summary for Link H: Watershed H

Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
100-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfilllDesign\Stormwater (Plan B)\Text an

Summary for Link I: Watershed I

Inflow Area $=22.132$ ac, 0.00% Impervious, Inflow Depth $=8.53$ " for 100-Year, 24 -Hour event
Inflow $=160.52$ cfs @ 12.15 hrs , Volume= 15.733 af

Primary $=160.52$ cfs @ 12.15 hrs , Volume $=15.733 \mathrm{af}$, Atten= 0%, Lag= 0.0 min
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
100-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito Landfill\Design\Stormwater (Plan B)\Text an

Summary for Link J: Watershed J

Inflow Area $=$	35.077 ac,	0.00% Impervious, Inflow Depth $=8.53^{\prime \prime}$	for $100-$ Year, 24 -Hour event	
Inflow	$=$	$234.76 \mathrm{cfs} @$	12.15 hrs , Volume $=$	24.936 af
Primary $=$	$234.76 \mathrm{cfs} @$	12.15 hrs , Volume=	24.936 af , Atten= 0%, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:|Projects\2013|Pescadito Landfill\Design\Stormwater (Plan B)\Text an

Summary for Link K: Watershed K

Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
100-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfilliDesign\Stormwater (Plan B)\Text an

Summary for Link L: Watershed L

Summary for Link M: Watershed M

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito Landfill 1 DesignlStormwater (Plan B)\Text an

Summary for Link N: Watershed N

Inflow Area =	33.325 ac ,	0.00\% Impervious, In	epth $=8.53^{\prime \prime}$ for 100-Year, 24-Hour event
Inflow	209.68 cfs @	12.16 hrs , Volume=	23.690 af
Primary =	209.68 cfs @	12.16 hrs , Volume=	23.690 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow	Inflow, Time	Span= 0.00-36.00 hrs,	01 hrs

Summary for Link O: Watershed O

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:IProjects\20131Pescadito LandfilldDesignlStormwater (Plan B)\Text an

Pescadito Perimeter
Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 86

Summary for Link P: Watershed P

Inflow Area $=\quad 46.766 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=8.53$ " for 100 -Year, 24 -Hour event
Inflow $=349.50 \mathrm{cfs}$ @ 12.12 hrs , Volume $=33.246 \mathrm{af}$
Primary $=349.50$ cfs @ 12.12 hrs, Volume $=33.246 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfilllDesign\Stormwater (Plan B)\Text an

Summary for Link toDA2: Discharge to DA2

Inflow Area $=809.838$ ac, 6.05% Impervious, Inflow Depth >8.06 " for 100-Year, 24-Hour event Inflow $=717.41$ cfs @ 14.01 hrs, Volume= $\quad 544.112 \mathrm{af}$ Primary $=717.41$ cfs @ 14.01 hrs , Volume $=544.112 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link toDA3: Discharge to DA3

Inflow $=104.59 \mathrm{cfs} @ 14.01 \mathrm{hrs}$, Volume $=\quad 23.428 \mathrm{af}$
Primary $=104.59 \mathrm{cfs} @ 14.01 \mathrm{hrs}$, Volume $=\quad 23.428 \mathrm{af}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Technically Complete, March 11, 2016

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Summary for Subcatchment A5LLS: 5 Lower Left Subcat

Runoff $=18.10$ cfs @ 12.09 hrs, Volume= $\quad 1.440$ af, Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment A5LRS: 5 Lower Right Subcat

Runoff $=17.92$ cfs @ 12.10 hrs , Volume= $\quad 1.441$ af, Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment A5MLS: 5 Middle Left Subcat
Runoff $=23.28$ cfs @ 12.10 hrs, Volume $=1.874$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment A5MRS: 5 Middle Right Subcat
Runoff $=\quad 23.59$ cfs @ 12.11 hrs, Volume= 1.937 af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
122,444	92			
14,024	92			
15,834	96			
$\begin{aligned} & 152,302 \\ & 152,302 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150$ P2 $=3.75^{\prime \prime}$

Summary for Subcatchment A5ULS: 5 Upper Left Subcat

Runoff $=\quad 20.77$ cfs @ 12.11 hrs, Volume $=\quad 1.705 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD(8) $10.00 \mathrm{~s} / \mathrm{n} 04891$ (c) 2011 HydroCAD Software Solutions LLC
Page 3

Summary for Subcatchment A5URS: 5 Upper Right Subcat

Runoff $=21.13 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=1.746 \mathrm{af}$, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment B7LLS: 7 Lower Left Subcat

Runoff $=16.85$ cfs @ 12.10 hrs, Volume= $\quad 1.356$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment B7LRS: 7 Lower Right Subcat
Runoff $=16.56$ cfs @ 12.10 hrs , Volume= $\quad 1.324$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	ea (sf)	CN D	Description		
	81,647	92			
	11,925	96			
	10,562	92			
	$\begin{aligned} & 04,134 \\ & 04,134 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ftff)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.1	262	0.2500	0.61		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment B7ULS: 7 Upper Left Subcat

Runoff $=18.10 \mathrm{cfs}$ @ 12.11 hrs , Volume= $\quad 1.486 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment B7URS: 7 Upper Right Subcat
Runoff $=\quad 17.93 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 1.472$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Area (sf) CN Description
$\left.\begin{array}{lrrl}\hline * & 93,145 & 92 & \\ * & 11,984 & 96 \\ * & 10,614 & 92\end{array}\right)$

Summary for Subcatchment C5LLS: 5 Lower Left Subcat

Runoff $=16.69$ cfs @ 12.09 hrs, Volume $=1.336$ af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrl} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 74,693 & 92 & \\ * & 15,145 & 96 & \\ * & 13,414 & 92\end{array}\right)$

Summary for Subcatchment C5LRS: 5 Lower Right Subcat

Runoff $=16.83$ cfs @ 12.09 hrs , Volume= $\quad 1.339 \mathrm{af}$, Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment C5MLS: 5 Middle Left Subcat

Runoff $=\quad 21.97 \mathrm{cfs} @ 12.11$ hrs, Volume $=1.798$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	113,067	92	
$*$	14,998	96	
$*$	13,284	92	
	141,349	92	Weighted Average
	141,349		100.00% Pervious Area

Tc Length Slope Velocity Capacity Description

| (min) | (feet) | (ft/ft) (ft/sec) (cfs)
 7.8 292 0.2500 0.63\quad Sheet Flow, |
| ---: | ---: | ---: | ---: | ---: | ---: |

$\mathrm{n}=0.150$ ' $\mathrm{P} 2=3.75$ "

Summary for Subcatchment C5MRS: 5 Middle Right Subcat

Runoff $=\quad 21.84$ cfs @ 12.10 hrs, Volume= $\quad 1.758$ af, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	ea (sf)	CN	Description		
	09,253	92			
	15,365	96			
	13,609	92			
	$\begin{aligned} & 38,227 \\ & 38,227 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.3	271	0.2500	0.62		Sheet Flow, $n=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$

Summary for Subcatchment C5ULS: 5 Upper Left Subcat

Runoff $=\quad 21.00$ cfs @ 12.11 hrs, Volume= 1.730 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	111,570	92	
$*$	12,982	96	
$*$	11,498	92	
	136,050	92	Weighted Average
	136,050		100.00% Pervious Area

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Tc (min)	Length (feet)	Slope (ft/f)	Velocity (ft/sec)	Capacity (cfs)
7.9	300	0.2500	0.63	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$ Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps
0.1	27	0.2500	3.50	

Summary for Subcatchment C5URS: 5 Upper Right Subcat

Runoff $=\quad 20.09$ cfs @ 12.11 hrs, Volume= $\quad 1.649 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment D7LLS: 7 Lower Left Subcat

Runoff $=\quad 15.83$ cfs @ 12.11 hrs, Volume= $\quad 1.304$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN	Description		
* 83,617	92			
* 10,024	96			
* 8,878	92			
$\begin{aligned} & 102,519 \\ & 102,519 \end{aligned}$		Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \quad P 2=3.75^{\prime \prime}$
0.114	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0314	Total			

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfal/=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Subcatchment D7LRS: 7 Lower Right Subcat
Runoff $=15.74$ cfs @ 12.11 hrs, Volume $=1.292$ af, Depth $=6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

8.1342 Total

Summary for Subcatchment D7URS: 7 Upper Right Subcat

Runoff $=16.59$ cfs @ 12.11 hrs, Volume $=1.367$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & \begin{array}{l}88,514\end{array} & 92 & \\ * & 10,059 & 96 \\ 8,909 & 92\end{array}\right)$

Summary for Subcatchment E5LLS: 5 Lower Left Subcat

Runoff $=19.46$ cfs @ 12.10 hrs , Volume $=1.595 \mathrm{af}$, Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment E5LRS: 5 Lower Right Subcat

Runoff $=19.46$ cfs @ 12.10 hrs, Volume= 1.595 af , Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	91,941	92	
$*$	16,597	96	
$*$	14,700	92	
	123,238	93	Weighted Average
	123,238		100.00% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.6	286	0.2500	0.62		Sheet Flow $\mathrm{n}=0.150$

Summary for Subcatchment E5MLS: 5 Middle Left Subcat

Runoff $=\quad 23.56$ cfs @ 12.11 hrs, Volume= $\quad 1.941$ af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 124,489 & 92 & & \\ * & 14,921 & 96 \\ 13,215 & 92\end{array}\right)$

Summary for Subcatchment E5MRS: 5 Middle Right Subcat

Runoff $=\quad 23.56$ cfs @ 12.11 hrs, Volume $=1.941$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 124,482 & 92 & & \\ * & 14,921 & 96 \\ 13,215 & 92\end{array}\right)$

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Subcatchment E5ULS: 5 Upper Left Subcat

Runoff $=\quad 21.76$ cfs @ 12.11 hrs, Volume $=\quad 1.798$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 117,133 & 92 & & \\ * & 12,856 & 96 \\ 11,386 & 92\end{array}\right)$

Summary for Subcatchment E5URS: 5 Upper Right Subcat

Runoff $=\quad 22.13 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=\quad 1.829 \mathrm{af}$, Depth= $6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
119,156	92			
* 13,076	96			
* 11,582	92			
$\begin{aligned} & 143,814 \\ & 143,814 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \quad P 2=3.75^{\prime \prime}$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1342	Total			

Summary for Subcatchment EMCS: East Middle Channel Subcat

Runoff $=10.14 \mathrm{cfs} @ 12.00 \mathrm{hrs}$, Volume= $\quad 0.646 \mathrm{af}$, Depth= 6.77"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	18,109	96	
$*$	31,782	92	
49,891	93	Weighted Average	
49,891		100.00\% Pervious Area	
		Summary for Subcatchment EMS: East Middle Subcat	

Runoff $=65.07$ cfs @ 12.61 hrs, Volume= $\quad 10.716$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN Description			
	42,596	92			
842,596		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
36.5	300	0.0055	0.14		Sheet Flow, Grass: Short $\mathrm{n}=0.150 \mathrm{P} 2=3.75{ }^{\prime \prime}$
9.1	282	0.0055	0.52		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

Summary for Subcatchment F7LLS: 7 Lower Left Subcat

Runoff = 17.30 cfs @ 12.11 hrs, Volume= 1.425 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN Description			
91,194	92			
11,064	96			
9,799	92			
$\begin{aligned} & 112,057 \\ & 112,057 \end{aligned}$	92 Weighted Average 100.00% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.115	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0315	Total			

Summary for Subcatchment F7LRS: 7 Lower Right Subcat

Runoff $=17.27$ cfs @ 12.11 hrs, Volume= $\quad 1.423$ af, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 91,012 & 92 & & \\ * & 11,071 & 96 \\ 9,805 & 92\end{array}\right)$

Summary for Subcatchment F7ULS: 7 Upper Left Subcat

Runoff $=18.91$ cfs @ 12.11 hrs, Volume= $\quad 1.563$ af, Depth= $6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
101,812	92			
11,176	96			
9,898	92			
$\begin{aligned} & 122,886 \\ & 122,886 \end{aligned}$	92		Weighted Average 100.00\% Pervious Area	
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { ' } \mathrm{P} 2=3.75^{\prime \prime}$
0.246	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1346	Total			

Summary for Subcatchment F7URS: 7 Upper Right Subcat

Runoff $=\quad 18.62$ cfs @ 12.11 hrs, Volume= $\quad 1.539$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN	Description		
100,155	92			
11,060	96			
9,796	92			
$\begin{aligned} & 121,011 \\ & 121,011 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.243	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

8.1343 Total

Summary for Subcatchment G5LLS: 5 Lower Left Subcat

Runoff $=19.37$ cfs @ 12.11 hrs, Volume $=1.605$ af, Depth= 6.77"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN D	Description			
*	93,236	92				
*	16,296	96				
*	14,434	92				
$\begin{aligned} & 123,966 \\ & 123,966 \end{aligned}$		93	Weighted Average 100.00% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	297	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150$	

Summary for Subcatchment G5LRS: 5 Lower Right Subcat

Runoff $=19.46$ cfs @ 12.11 hrs, Volume $=1.606$ af, Depth= 6.77"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr $25-$ Year, $24-$ Hour Rainfall $=7.60$ "

	Area (sf)	CN	Description
$*$	93,186	92	
$*$	16,380	96	
$*$	14,508	92	
	124,074	93	Weighted Average
	124,074		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60" Prepared by CB\&I Environmental and Infrastructure, Inc.

Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 15

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	295	0.2500	0.63		$\begin{gathered} \text { Sheet Flow } \\ n=0.150 \end{gathered}$

Summary for Subcatchment G5MLS: 5 Middle Left Subcat

Runoff $=23.20 \mathrm{cfs} @ 12.11$ hrs, Volume $=1.911$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 123,329 & 92 & & \\ * & 14,298 & 96 \\ 12,664 & 92\end{array}\right)$

Summary for Subcatchment G5MRS: 5 Middle Right Subcat

Runoff $=\quad 23.12$ cfs @ 12.11 hrs, Volume $=1.905$ af, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 122,673 & 92 & & \\ * & 14,371 & 96 & & \\ 12,729 & 92\end{array}\right)$

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Subcatchment G5ULS: 5 Upper Left Subcat

Runoff $=\quad 22.30$ cfs @ 12.11 hrs, Volume $=1.843$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 120,624 & 92 & & \\ * & 12,866 & 96 \\ 11,396 & 92\end{array}\right)$
8.1351 Total

Summary for Subcatchment G5URS: 5 Upper Right Subcat

Runoff $=\quad 21.89$ cfs @ 12.11 hrs, Volume= $\quad 1.809$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment H7LLS: 7 Lower Left Subcat

Runoff = 16.35 cfs @ 12.11 hrs, Volume= 1.346 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
86,611	92			
9,046	92			
10,213	96			
$\begin{aligned} & 105,870 \\ & 105,870 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.116	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0316	Total			

Summary for Subcatchment H7LRS: 7 Lower Right Subcat

Runoff $=16.35$ cfs @ 12.11 hrs, Volume= $\quad 1.347$ af, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 86,831 & 92 & & \\ * & \begin{array}{ll}8,947 & 92\end{array} & & \\ * & 10,101 & 96\end{array}\right)$

Summary for Subcatchment H7ULS: 7 Upper Left Subcat

Runoff $=17.09$ cfs @ 12.11 hrs, Volume= 1.412 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfal/=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 18

8.1336 Total

Summary for Subcatchment H7URS: 7 Upper Right Subcat

Runoff $=\quad 17.57$ cfs @ 12.11 hrs, Volume= 1.452 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN	Description		
94,995	92			
8,993	92			
10,154	96			
$\begin{aligned} & 114,142 \\ & 114,142 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{array}{r} \text { Capacity } \\ \text { (cfs) } \end{array}$	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$
0.251	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

8.1351 Total

Summary for Subcatchment I5LLS: 5 Lower Left Subcat

Runoff $=18.50 \mathrm{cfs}$ @ 12.09 hrs , Volume $=\quad 1.473$ af, Depth= 6.77"
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc. Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 19

Summary for Subcatchment I5LRS: 5 Lower Right Subcat

Runoff $=18.31$ cfs @ 12.09 hrs , Volume $=1.467$ af, Depth= $6.77^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment I5MLS: 5 Middle Left Subcat

Runoff $=\quad 23.68$ cfs @ 12.10 hrs , Volume= 1.906 af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN D	Description		
* 1	11,152	92			
*	15,593	96			
*	23,166	92			
	49,911	92	Weighted Average 100.00\% Pervious Area		
	49,911				
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
7.3	272	0.2500	0.62		$\begin{gathered} \text { Sheet Flow, } \\ n=0.150 \end{gathered}$

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Summary for Subcatchment I5MRS: 5 Middle Right Subcat

Runoff $=23.81$ cfs @ 12.11 hrs, Volume $=1.948 \mathrm{af}$, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment I5ULS: 5 Upper Left Subcat

Runoff $=\quad 21.50 \mathrm{cfs}$ @ 12.11 hrs, Volume $=\quad 1.765 \mathrm{af}$, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	ea (sf)	CN	Description		
	05,593	92			
	13,353	96			
	19,838	92			
$138,784$		92	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\min) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	298	0.2500	0.63		$\begin{gathered} \text { Sheet Flow, } \\ n=0.150 \end{gathered}$

Summary for Subcatchment I5URS: 5 Upper Right Subcat

Runoff $=\quad 22.50$ cfs @ 12.11 hrs, Volume= $\quad 1.854$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60" Prepared by CB\&I Environmental and Infrastructure, Inc.

Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 21

Summary for Subcatchment J7LLS: 7 Lower Left Subcat

Runoff $=15.67$ cfs @ 12.10 hrs, Volume= $\quad 1.256$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	72,907	92	
$*$	10,416	96	
$*$	15,475	92	
	98,798	92	Weighted Average
	98,798		100.00\% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ftft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.2	266	0.2500	0.62		$\begin{gathered} \text { Sheet Flow } \\ n=0.150 \end{gathered}$

Summary for Subcatchment J7LRS: 7 Lower Right Subcat

Runoff $=\quad 15.59 \mathrm{cfs} @ 12.10 \mathrm{hrs}$, Volume= $\quad 1.255 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	72,963	92	
$*$	10,353	96	
$*$	15,382	92	
	98,698	92	Weighted Average
98,698		100.00\% Pervious Area	

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 22

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
7.3	268	0.2500	0.62		Sheet Flow,

Summary for Subcatchment J7ULS: 7 Upper Left Subcat

Runoff $=16.54 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 1.353 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	ea (sf)	CN	Description		
	80,571	92			
	10,378	96			
	15,418	92			
	$\begin{aligned} & 06,367 \\ & 06,367 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	294	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150$

Summary for Subcatchment J7URS: 7 Upper Right Subcat

Runoff $=16.67 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume= $\quad 1.369$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5LLS: 5 Lower Left Subcat

Runoff $=17.85$ cfs @ 12.09 hrs , Volume $=1.421$ af, Depth= $6.77^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5LRS: 5 Lower Right Subcat

Runoff $=18.21$ cfs @ 12.09 hrs , Volume= $\quad 1.440$ af, Depth= $6.77^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5MLS: 5 Middle Left Subcat
Runoff $=23.60$ cfs @ 12.11 hrs, Volume= 1.924 af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5MRS: 5 Middle Right Subcat

Runoff $=\quad 23.33$ cfs @ 12.10 hrs , Volume $=\quad 1.871 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5ULS: 5 Upper Left Subcat
Runoff $=\quad 22.67$ cfs @ 12.11 hrs, Volume= 1.868 af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment K5URS: 5 Upper Right Subcat

Runoff $=\quad 21.97 \mathrm{cfs}$ @ 12.11 hrs, Volume= $\quad 1.798 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	107,103	92	
$*$	13,776	96	
$*$	20,467	92	
	141,346	92	Weighted Average
	141,346		100.00% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity (cfs)	Description
7.8	294	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$

Summary for Subcatchment L7LLS: 7 Lower Left Subcat

Runoff $=\quad 21.87$ cfs @ 12.11 hrs, Volume= $\quad 1.796$ af, Depth= $6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment L7LRS: 7 Lower Right Subcat

Runoff $=\quad 21.70$ cfs @ 12.11 hrs, Volume= $\quad 1.782$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description

* 106,367 92
* 13,570 96
* 20,160 92

140,097 92 Weighted Average
140,097 100.00\% Pervious Area

$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	296	0.2500	0.63		Sheet Flow $n=0.150$

Summary for Subcatchment L7ULS: 7 Upper Left Subcat

Runoff $=\quad 23.90$ cfs @ 12.11 hrs, Volume $=\quad 1.975$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
121,664	92			
13,517	96			
20,082	92			
$\begin{aligned} & 155,263 \\ & 155,263 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75^{\prime \prime}$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps
8.1342	Total			

Summary for Subcatchment L7URS: 7 Upper Right Subcat

Runoff $=\quad 23.11$ cfs @ 12.11 hrs, Volume $=1.904$ af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN Description			
116,121				
13,517	96			
20,082	92			
$\begin{aligned} & 149,720 \\ & 149,720 \end{aligned}$	92 Weighted Average100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.123	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

8.0323 Total

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 27

Summary for Subcatchment M5LLS: 5 Lower Left Subcat

Runoff $=19.63 \mathrm{cfs}$ @ 12.10 hrs , Volume= $\quad 1.609 \mathrm{af}$, Depth= $6.77^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN	Description		
*	92,764	92			
	16,741	96			
*	14,818	92			
	$\begin{aligned} & 24,323 \\ & 24,323 \end{aligned}$	93	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.6	286	0.2500	0.62		Sheet Flow, $\mathrm{n}=0.150$

Summary for Subcatchment M5LRS: 5 Lower Right Subcat

Runoff = 21.03 cfs @
12.10 hrs , Volume=
1.709 af, Depth $=6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN	Description		
92,764		92			
$24,872$		92			
$134,377$		92	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.6	286	0.2500	0.62		Sheet Flow, $n=0.150$

Summary for Subcatchment M5MLS: 5 Middle Left Subcat

Runoff $=\quad 23.81$ cfs @ 12.11 hrs, Volume $=\quad 1.961 \mathrm{af}$, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		Description		
125,780	92			
15,068	96			
13,346	92			
$\begin{aligned} & 154,194 \\ & 154,194 \end{aligned}$		Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.116	0.2500	3.50		Shallow Concentrated Flow, $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0316	Total			

Summary for Subcatchment M5MRS: 5 Middle Right Subcat

Runoff $=\quad 25.20 \mathrm{cfs}$ @ 12.11 hrs , Volume= $\quad 2.076$ af, Depth= 6.65"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment M5ULS: 5 Upper Left Subcat

Runoff $=\quad 22.85$ cfs @ 12.11 hrs, Volume= $\quad 1.889$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 29

Area (sf)	CN	Description		
123,162	92			
13,437	96			
11,901	92			
$\begin{aligned} & 148,500 \\ & 148,500 \end{aligned}$	92	Weighted Average 100.00\% Pervious Area		
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75 \text { " }$
0.246	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

Summary for Subcatchment M5URS: 5 Upper Right Subcat

Runoff $=\quad 23.71$ cfs @ 12.11 hrs, Volume= 1.960 af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)		CN	Description		
121,111		92			
13,265		96			
19,708		92			
154,084					
	54,084	92	Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \quad \mathrm{P} 2=3.75^{\prime \prime}$
0.2	42	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$

Summary for Subcatchment N7LLS: 7 Lower Left Subcat

Runoff $=\quad 16.46$ cfs @ 12.11 hrs, Volume= $\quad 1.360$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
88,465	92			
9,797	96			
8,677	92			
$\begin{aligned} & 106,939 \\ & 106,939 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \quad P 2=3.75 \prime$
0.238	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.1338	Total			

Summary for Subcatchment N7LRS: 7 Lower Right Subcat

Runoff $=16.38$ cfs @ 12.11 hrs, Volume $=\quad 1.349$ af, Depth $=6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment N7ULS: 7 Upper Left Subcat

Runoff $=17.68$ cfs @ 12.11 hrs, Volume= $\quad 1.465$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60" Prepared by CB\&I Environmental and Infrastructure, Inc.

Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 31

Summary for Subcatchment N7URS: 7 Upper Right Subcat

Runoff $=16.92$ cfs @ 12.11 hrs, Volume= 1.398 af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 32

Summary for Subcatchment O5LRS: 5 Lower Right Subcat

Runoff = $\quad 21.46$ cfs @ 12.11 hrs, Volume= $\quad 1.762$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	rea (sf)	CN D	Description		
*	96,933	92	Descriplion		
*	16,730	96			
*	24,856	92			
	$\begin{array}{r} 38,519 \\ 38,519 \end{array}$		Weighted Average 100.00\% Pervious Area		
$\begin{array}{r} \mathrm{Tc} \\ (\min) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150$

Summary for Subcatchment O5MLS: 5 Middle Left Subcat

Runoff $=\quad 26.35$ cfs @ 12.11 hrs, Volume $=\quad 2.170$ af, Depth $=6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	132,089	92	
$*$	15,519	96	
23,057	92		
	170,665	92	Weighted Average
	170,665		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 33

Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9	300	0.2500	0.63	Sheet Flow, $n=0.150 \quad$ P2 $=3.75 "$ Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
0.1	22	0.2500	3.50		

Summary for Subcatchment O5MRS: 5 Middle Right Subcat

Runoff $=\quad 26.61$ cfs @ 12.11 hrs, Volume= $\quad 2.199 \mathrm{af}$, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN	Description		
* 135,387	92			
* 15,085	96			
* 22,412	92			
$\begin{aligned} & 172,884 \\ & 172,884 \end{aligned}$	92 Weighted Average			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	$\begin{gathered} \text { Capacity } \\ \text { (cfs) } \end{gathered}$	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.242	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.1342	Total			

Summary for Subcatchment O5ULS: 5 Upper Left Subcat

Runoff $=\quad 23.70$ cfs @ 12.11 hrs, Volume= $\quad 1.958$ af, Depth= $6.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	121,507	92	
$*$	13,059	96	
$*$	19,401	92	
	153,967	92	Weighted Average
	153,967		100.00% Pervious Area

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 34

Tc (min)	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity $(\mathrm{ft} / \mathrm{sec})$	Capacity (cfs)	Description
7.9	300	0.2500	0.63	Sheet Flow, $\mathrm{n}=0.150$ P2 Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps	
0.2	48	0.2500	3.50		

8.1348 Total

Summary for Subcatchment O5URS: 5 Upper Right Subcat

Runoff $=\quad 23.82$ cfs @ 12.11 hrs, Volume $=1.974$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 130,312 & 92 \\ 13,202 & 96\end{array}\right)$
8.2366 Total

Summary for Subcatchment P7LLS: 7 Lower Left Subcat

Runoff $=21.56$ cfs @ 12.11 hrs, Volume= $\quad 1.770$ af, Depth= 6.65"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment P7LRS: 7 Lower Right Subcat

Runoff $=\quad 21.42$ cfs @ 12.11 hrs, Volume $=1.765$ af, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
106,561	92			
12,954	96			
19,245	92			
$\begin{aligned} & 138,760 \\ & 138,760 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity	Description
7.9300	0.2500	0.63		Sheet Flow, $\mathrm{n}=0.150 \mathrm{P} 2=3.75^{\prime \prime}$
0.113	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.0313	Total			

Summary for Subcatchment P7ULS: 7 Upper Left Subcat

Runoff $=\quad 22.78 \mathrm{cfs} @ 12.11 \mathrm{hrs}$, Volume $=1.877 \mathrm{af}$, Depth= $6.65^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
$\left.\begin{array}{lrrll} & \text { Area (sf) } & \text { CN } & \text { Description } \\ * & 115,032 & 92 & & \\ * & 13,090 & 96 \\ 19,448 & 92\end{array}\right)$

Summary for Subcatchment P7URS: 7 Upper Right Subcat

Runoff $=23.51$ cfs @ 12.11 hrs, Volume= $\quad 1.943$ af, Depth= $6.65^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf)	CN D	Description		
120,174	92			
13,111	96			
19,479	92			
$\begin{aligned} & 152,764 \\ & 152,764 \end{aligned}$	92 Weighted Average 100.00\% Pervious Area			
Tc Length (min) (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
7.9300	0.2500	0.63		Sheet Flow, $n=0.150 \text { P2 }=3.75 \prime$
0.248	0.2500	3.50		Shallow Concentrated Flow, Short Grass Pasture $\mathrm{Kv}=7.0 \mathrm{fps}$
8.1348	Total			

Summary for Subcatchment SDBS: South Detention Basin Subcatchment

Runoff $=435.48 \mathrm{cfs} @ 12.03 \mathrm{hrs}$, Volume= $\quad 31.473 \mathrm{af}$, Depth= $7.36{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Summary for Subcatchment WMCS: West Middle Channel Subcat

Runoff $=3.63 \mathrm{cfs} @ 12.00 \mathrm{hrs}$, Volume $=\quad 0.231$ af, Depth $=6.77^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

	Area (sf)	CN	Description
$*$	6,475	96	
$*$	11,364	92	
	17,839	93	Weighted Average
17,839		100.00% Pervious Area	

Summary for Subcatchment WMS: West Middle Subcat
Runoff $=42.51$ cfs @ 12.48 hrs , Volume $=\quad 6.373 \mathrm{af}$, Depth= $6.65{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Area (sf) CN Description					
	01,116	92			
501,116		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ftff)	Velocity (ft/sec)	Capacity (cfs)	Description
34.2	300	0.0065	0.15		Sheet Flow, Grass: Short $\mathrm{n}=0.150 \quad \mathrm{P} 2=3.75{ }^{\prime \prime}$
3.6	121	0.0065	0.56		Shallow Concentrated Flow, Short Grass Pasture Kv=7.0 fps

37.8421 Total

Summary for Reach EMC: East Middle Channel

Inflow Area $=176.097$ ac, 0.00% Impervious, Inflow Depth $=6.66$ " for $25-Y e a r, 24-$ Hour event Inflow $=432.63$ cfs @ 12.54 hrs , Volume= $\quad 97.667$ af
Outflow = $431.04 \mathrm{cfs} @ 12.59 \mathrm{hrs}$, Volume $=97.667 \mathrm{af}$, Atten $=0 \%$, Lag $=3.5 \mathrm{~min}$
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.23 \mathrm{fps}$, Min. Travel Time $=2.0 \mathrm{~min}$
Avg. Velocity $=1.20 \mathrm{fps}$, Avg. Travel Time $=7.2 \mathrm{~min}$
Peak Storage= 52,672 cf @ 12.56 hrs
Average Depth at Peak Storage= 2.35'
Bank-Full Depth=4.00' Flow Area= 196.0 sf, Capacity= 1,118.97 cfs
$35.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 ' $/ \prime$ ' Top Width=63.00'
Length=517.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.55'

Summary for Reach NDE01: N Ditch E 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.93 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=5.7 \mathrm{~min}$
Peak Storage= 26,744 cf @ 12.49 hrs
Average Depth at Peak Storage= 2.48'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.98 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=432.7' Slope=0.0030 '/'
Inlet Invert $=0.00^{\prime}$, Outlet Invert $=-1.30^{\prime}$

Summary for Reach NDE02: N Ditch E 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.95 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=5.7 \mathrm{~min}$
Peak Storage= 26,733 cf @ 12.54 hrs
Average Depth at Peak Storage=2.50'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.62 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=428.5' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach NDE03: N Ditch E 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.96 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=4.9 \mathrm{~min}$
Peak Storage= 23,381 cf @ 12.59 hrs
Average Depth at Peak Storage=2.52'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.75 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 370.9' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.11'

Summary for Reach NDE04: N Ditch E 4

Inflow Area $=\quad 87.922$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for 25-Year, $24-$ Hour event Inflow $=251.90$ cfs @ 12.61 hrs, Volume $=\quad 48.753 \mathrm{af}$ Outflow = 251.30 cfs @ 12.65 hrs , Volume $=\quad 48.753 \mathrm{af}$, Atten= 0%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.96 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.2 \mathrm{~min}$
Avg. Velocity $=1.26 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 18,220 cf @ 12.63 hrs
Average Depth at Peak Storage=2.53'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.71 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=287.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.86^{\prime}

Summary for Reach NDE05: N Ditch E 5

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=4.26 \mathrm{fps}$, Min. Travel Time $=1.1 \mathrm{~min}$
Avg. Velocity $=1.39 \mathrm{fps}$, Avg. Travel Time $=3.4 \mathrm{~min}$
Peak Storage= 21,791 cf @ 12.65 hrs
Average Depth at Peak Storage=2.87'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 633.59 cfs
$15.00^{\prime} \times 4.00$ ' deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=286.6' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.86'

Summary for Reach NDE06: N Ditch E 6

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.27 \mathrm{fps}, \mathrm{Min}$. Travel Time= 1.1 min
Avg. Velocity $=1.39 \mathrm{fps}$, Avg. Travel Time $=3.4 \mathrm{~min}$
Peak Storage $=21,859$ cf @ 12.68 hrs
Average Depth at Peak Storage= 2.88'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.81 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=286.4$ ' Slope $=0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -0.86'

Summary for Reach NDE07: N Ditch E 7

Inflow Area $=$	128.848 ac,	0.00% Impervious, Inflow Depth $=6.65 " \quad$ for $25-$ Year, 24 -Hour event		
Inflow	$=$	$327.79 \mathrm{cfs} @$	12.69 hrs , Volume $=$	71.425 af
Outflow	$=$	$327.46 \mathrm{cfs} @$	12.72 hrs , Volume $=$	71.425 af , Atten $=0 \%$, Lag $=1.8 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.28 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.1 \mathrm{~min}$
Avg. Velocity $=1.39 \mathrm{fps}$, Avg. Travel Time $=3.4 \mathrm{~min}$
Peak Storage= 21,837 cf @ 12.71 hrs
Average Depth at Peak Storage= 2.88'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 635.03 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=285.3^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.86^{\prime}

Summary for Reach NDE08: N Ditch E 8

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.28 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.38 \mathrm{fps}$, Avg. Travel Time $=4.5 \mathrm{~min}$
Peak Storage= 28,799 cf @ 12.74 hrs
Average Depth at Peak Storage= 2.90'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.29 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=373.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.12'

Summary for Reach NDE09: N Ditch E 9

Inflow Area $=$	135.653 ac,	0.00% Impervious, Inflow Depth $=6.65^{\prime \prime} \quad$ for $25-$ Year, $24-$ Hour event		
Inflow	$=$	$333.21 \mathrm{cfs} @$	12.56 hrs, Volume $=$	75.195 af
Oufflow	$=$	$332.93 \mathrm{cfs} @$	12.60 hrs , Volume $=$	75.195 af , Atten= $=0 \%$, Lag= 2.6 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.29 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage= 33,067 cf @ 12.57 hrs
Average Depth at Peak Storage= 2.91'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.79 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=426.3' Slope $=0.0030 \mathrm{l} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach NDE10: N Ditch E 10

Inflow Area $=138.482$ ac, $\quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=336.03$ cfs @ 12.59 hrs, Volume $=76.790$ af Outflow = $335.83 \mathrm{cfs} @ 12.64 \mathrm{hrs}$, Volume $=\quad 76.790 \mathrm{af}$, Atten= 0%, Lag= 2.8 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $4.30 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=5.8 \mathrm{~min}$
Peak Storage= 37,050 cf @ 12.61 hrs
Average Depth at Peak Storage=2.93'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.94 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=474.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.42'

Summary for Reach NDNE01: N Ditch NE 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.50 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.16 \mathrm{fps}$, Avg. Travel Time $=5.0 \mathrm{~min}$
Peak Storage= 16,020 cf @ 12.23 hrs
Average Depth at Peak Storage=2.01'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 633.58 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=346.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach NDNE02: N Ditch NE 2

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 3.54 fps , Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.16 \mathrm{fps}$, Avg. Travel Time $=4.9 \mathrm{~min}$
Peak Storage= 16,405 cf @ 12.28 hrs
Average Depth at Peak Storage=2.05'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity $=632.99$ cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=343.9' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.03'

Summary for Reach NDNE03: N Ditch NE 3

Inflow Area $=$	49.337 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$178.06 \mathrm{cfs} @$	12.31 hrs, Volume=
Outflow	$=$	$175.60 \mathrm{cfs} @$	12.36 hrs , Volume=

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.59 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.16 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage= 18,523 cf @ 12.33 hrs
Average Depth at Peak Storage= 2.09'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity $=634.77$ cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=378.5^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.14'

Summary for Reach NDNE04: N Ditch NE 4

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Max. Velocity= 3.62 fps , Min. Travel Time $=2.0 \mathrm{~min}$
Avg. Velocity $=1.15 \mathrm{fps}$, Avg. Travel Time $=6.3 \mathrm{~min}$
Peak Storage= 21,965 cf @ 12.39 hrs
Average Depth at Peak Storage= 2.13'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 634.24 cfs
15.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=439.0' Slope= 0.0030 '/'
Inlet Invert=0.00', Outlet Invert= -1.32'

Summary for Reach NDNE05: N Ditch NE 5

Inflow Area $=76.716 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=242.83 \mathrm{cfs}$ @ 12.42 hrs , Volume= 42.522 af Outflow $=240.62$ cfs @ 12.47 hrs, Volume $=42.522$ af, Atten= 1%, Lag= 3.4 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.92 fps , Min. Travel Time $=1.9 \mathrm{~min}$
Avg. Velocity $=1.27 \mathrm{fps}$, Avg. Travel Time $=5.8 \mathrm{~min}$
Peak Storage= 27,208 cf @ 12.44 hrs
Average Depth at Peak Storage= 2.47'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.61 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=443.2' Slope=0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach NDNW01: N Ditch NW 1

Routing by Stor-Ind + Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=1.92 \mathrm{fps}$, Min. Travel Time $=3.0 \mathrm{~min}$
Avg. Velocity $=0.52 \mathrm{fps}$, Avg. Travel Time $=10.9 \mathrm{~min}$
Peak Storage= 2,781 cf @ 12.13 hrs
Average Depth at Peak Storage= 0.48^{\prime}
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 785.17 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=340.7$ ' Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.57'

Summary for Reach NDNW02: N Ditch NW 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.41 fps , Min. Travel Time $=2.4 \mathrm{~min}$
Avg. Velocity $=0.65 \mathrm{fps}$, Avg. Travel Time $=8.8 \mathrm{~min}$
Peak Storage= 4,331 cf @ 12.17 hrs
Average Depth at Peak Storage=0.71'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 785.70 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/ \prime$ Top Width= 47.00'
Length=342.4' Slope $=0.0046 \mathrm{l} /$
Inlet Invert= 0.00', Outlet Invert= -1.58'

Summary for Reach NDNW03: N Ditch NW 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.74 \mathrm{fps}$, Min. Travel Time $=2.4 \mathrm{~min}$
Avg. Velocity $=0.74 \mathrm{fps}$, Avg. Travel Time $=8.8 \mathrm{~min}$
Peak Storage= 6,453 cf @ 12.20 hrs
Average Depth at Peak Storage $=0.89^{\prime}$
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 784.47 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=391.3' Slope= 0.0046 '/'
Inlet Invert= 0.00', Outlet Invert= -1.80'

Summary for Reach NDNW04: N Ditch NW 4

Inflow Area $=$	11.509 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$59.30 \mathrm{cfs} @$	12.19 hrs , Volume $=$	6.376 af
Outflow	$=$	$58.64 \mathrm{cfs} @$	12.27 hrs , Volume $=$	6.376 af , Atten= $\%$, Lag= 4.6 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 2.98 fps , Min. Travel Time $=2.6 \mathrm{~min}$
Avg. Velocity $=0.82 \mathrm{fps}$, Avg. Travel Time $=9.4 \mathrm{~min}$
Peak Storage=9,157 cf @ 12.22 hrs
Average Depth at Peak Storage=1.03'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 784.06 cfs
15.00 ' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=465.7' Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -2.14'

Summary for Reach NDNW05: N Ditch NW 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.88 \mathrm{fps}$, Min. Travel Time $=2.0 \mathrm{~min}$
Avg. Velocity $=1.20 \mathrm{fps}$, Avg. Travel Time $=6.6 \mathrm{~min}$
Peak Storage= 16,840 cf @ 12.24 hrs
Average Depth at Peak Storage=1.65'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 784.48 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=473.9^{\prime}$ Slope $=0.0046$ '/'
Inlet Invert= 0.00', Outlet Invert= -2.18'

Summary for Reach NDSE01: N Ditch SE 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=1.69 \mathrm{fps}$, Min. Travel Time $=3.1 \mathrm{~min}$
Avg. Velocity $=0.45 \mathrm{fps}$, Avg. Travel Time $=11.6 \mathrm{~min}$
Peak Storage= 3,051 cf @ 12.14 hrs
Average Depth at Peak Storage $=0.56^{\prime}$
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.88 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=316.3^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach NDSE02: N Ditch SE 2

Inflow Area $=$	5.347 ac,	0.00% Impervious, Inflow Depth $=6.65$ "	for $25-$ Year, 24 -Hour event
Inflow	$=$	$31.90 \mathrm{cfs} @$	12.15 hrs, Volume=
Outflow	$=$	$31.11 \mathrm{cfs} @$	12.22 hrs , Volume=

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Max. Velocity= $2.10 \mathrm{fps}, \mathrm{Min}$. Travel Time $=2.5 \mathrm{~min}$
Avg. Velocity $=0.57 \mathrm{fps}$, Avg. Travel Time $=9.3 \mathrm{~min}$
Peak Storage= 4,673 cf @ 12.18 hrs
Average Depth at Peak Storage=0.81'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.18 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width=47.00'
Length=316.0' Slope $=0.0030 \quad 1 /$
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach NDSE03: N Ditch SE 3

Inflow Area $=\quad 8.592 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event
Inflow $=47.00 \mathrm{cfs}$ @ 12.17 hrs , Volume= $\quad 4.760 \mathrm{af}$
Outflow = 46.20 cfs @ 12.25 hrs , Volume $=4.760 \mathrm{af}$, Atten $=2 \%$, Lag= 4.5 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.39 fps, Min. Travel Time $=2.6 \mathrm{~min}$
Avg. Velocity $=0.65 \mathrm{fps}$, Avg. Travel Time $=9.4 \mathrm{~min}$
Peak Storage= 7,103 cf @ 12.20 hrs
Average Depth at Peak Storage=1.01'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 632.97 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=367.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.10'

Summary for Reach NDSE04: N Ditch SE 4

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=2.60 \mathrm{fps}, \mathrm{Min}$. Travel Time $=2.7 \mathrm{~min}$
Avg. Velocity $=0.71 \mathrm{fps}$, Avg. Travel Time $=10.0 \mathrm{~min}$
Peak Storage= 9,876 cf @ 12.23 hrs
Average Depth at Peak Storage= 1.18'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.79 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=426.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach NDSE05: N Ditch SE 5

Inflow Area $=$	14.925 ac,	0.00% Impervious, Inflow Depth $=6.67 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$70.12 \mathrm{cfs} @$	12.25 hrs , Volume $=$	8.296 af
Outflow	$=$	$69.40 \mathrm{cfs} @$	12.34 hrs , Volume $=$	8.296 af , Atten $=1 \%$, Lag $=5.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.72 \mathrm{fps}$, Min. Travel Time $=2.9 \mathrm{~min}$
Avg. Velocity $=0.75 \mathrm{fps}$, Avg. Travel Time $=10.6 \mathrm{~min}$
Peak Storage= 12,120 cf @ 12.29 hrs
Average Depth at Peak Storage=1.27'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 632.94 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=474.2' Slope=0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.42'

Summary for Reach NDSW01: N Ditch SW 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.86 fps, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.1 \mathrm{~min}$
Peak Storage= 12,320 cf @ 12.25 hrs
Average Depth at Peak Storage=1.77'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 750.26 cfs
15.00' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=316.1' Slope= 0.0042 '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach NDSW02: N Ditch SW 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.92 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.1 \mathrm{~min}$
Peak Storage= 12,924 cf @ 12.29 hrs
Average Depth at Peak Storage=1.82'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 749.29 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=319.3' Slope=0.0042 '/'
Inlet Invert= 0.00', Outlet Invert= -1.34'

Summary for Reach NDSW03: N Ditch SW 3

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.97 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage= 15,301 cf @ 12.34 hrs
Average Depth at Peak Storage= 1.87'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 748.85 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=365.0^{\prime}$ Slope $=0.0042{ }^{\prime} / /$
Inlet Invert= 0.00', Outlet Invert= -1.53'

Summary for Reach NDSW04: N Ditch SW 4

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 4.02 fps , Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage= 17,731 cf @ 12.38 hrs
Average Depth at Peak Storage=1.91'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 748.60 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=410.6' Slope $=0.0042 \mathrm{I} / \mathrm{I}$
Inlet Invert= 0.00', Outlet Invert= -1.72'

Summary for Reach NDSW05: N Ditch SW 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.06 \mathrm{fps}$, Min. Travel Time $=1.9 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=6.0 \mathrm{~min}$
Peak Storage= 20,527 cf @ 12.44 hrs
Average Depth at Peak Storage=1.93'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 750.43 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=468.0' Slope= 0.0042 '/'
Inlet Invert= 0.00', Outlet Invert= -1.97'

Summary for Reach NDW01: N Ditch W 1

Inflow Area	$=$	39.333 ac,	0.00% Impervious, Inflow Depth $=6.66$ "	for $25-$ Year, 24 -Hour event
Inflow	$=$	$146.35 \mathrm{cfs} @$	12.27 hrs, Volume $=$	21.840 af
Outflow	$=$	$143.99 \mathrm{cfs} @$	12.35 hrs , Volume $=$	21.840 af , Atten= 2%, Lag= 4.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.38 \mathrm{fps}$, Min. Travel Time $=2.3 \mathrm{~min}$
Avg. Velocity $=1.03 \mathrm{fps}$, Avg. Travel Time $=7.4 \mathrm{~min}$
Peak Storage= 19,604 cf @ 12.31 hrs
Average Depth at Peak Storage= 1.89'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.24 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 460.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.38'

Summary for Reach NDW02: N Ditch W 2

Inflow Area $=\quad 42.830$ ac, $\quad 0.00 \%$ Impervious, Inflow Depth $=6.66$ " for $25-Y e a r, 24$-Hour event Inflow $=153.76$ cfs @ 12.34 hrs , Volume= $\quad 23.777 \mathrm{af}$ Outflow $=152.00 \mathrm{cfs} @ 12.41 \mathrm{hrs}$, Volume $=23.777 \mathrm{af}$, Atten= 1%, Lag= 4.1 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 3.44 fps , Min. Travel Time $=2.2 \mathrm{~min}$
Avg. Velocity $=1.05 \mathrm{fps}$, Avg. Travel Time $=7.2 \mathrm{~min}$
Peak Storage= 19,996 cf @ 12.37 hrs
Average Depth at Peak Storage= 1.94'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.17 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=452.4' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.36'

Summary for Reach NDW03: N Ditch W 3

Inflow Area $=\quad 45.982 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.66$ " for $25-$ Year, 24 -Hour event Inflow $=159.45 \mathrm{cfs}$ @ 12.40 hrs , Volume $=25.523 \mathrm{af}$ Outflow = $158.79 \mathrm{cfs} @ 12.44 \mathrm{hrs}$, Volume $=\quad 25.523 \mathrm{af}$, Atten $=0 \%$, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.48 \mathrm{fps}$, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.06 \mathrm{fps}$, Avg. Travel Time $=4.6 \mathrm{~min}$
Peak Storage= 13,231 cf @ 12.42 hrs
Average Depth at Peak Storage=1.99'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.52 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=290.0^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00 ', Outlet Invert= -0.87^{\prime}

Summary for Reach NDW04: N Ditch W 4

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.51 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.07 \mathrm{fps}$, Avg. Travel Time $=4.5 \mathrm{~min}$
Peak Storage $=13,510$ cf @ 12.46 hrs
Average Depth at Peak Storage= 2.02'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 633.52 cfs
15.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length= 290.0' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.87^{\prime}

Summary for Reach NDW05: N Ditch W 5

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.03 fps , Min. Travel Time= 1.2 min
Avg. Velocity $=1.28 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 19,085 cf @ 12.45 hrs
Average Depth at Peak Storage= 2.58'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 635.18 cfs
15.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=291.8' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.88'

Summary for Reach NDW06: N Ditch W 6

Inflow Area		87.478 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$268.08 \mathrm{cfs} @$	12.47 hrs , Volume	48.511 af
Outflow	$=$	$267.75 \mathrm{cfs} @$	12.50 hrs , Volume=	48.511 af , Atten= $=0 \%$, Lag= 1.9 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.05 \mathrm{fps}$, Min. Travel Time $=1.2 \mathrm{~min}$
Avg. Velocity $=1.28 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 19,099 cf @ 12.48 hrs
Average Depth at Peak Storage= 2.60'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 635.05 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ Top Width= 47.00'
Length $=288.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert=0.00', Outlet Invert= -0.87^{\prime}

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 56

Summary for Reach NDW07: N Ditch W 7

Inflow Area $=\quad 90.098 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for 25 -Year, 24 -Hour event
Inflow $=272.26 \mathrm{cfs}$ @ 12.50 hrs , Volume= 49.962 af
Outflow = 272.01 cfs @ 12.53 hrs, Volume $=49.962 \mathrm{af}$, Atten= 0%, Lag= 1.9 min
Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity $=4.06 \mathrm{fps}$, Min. Travel Time= 1.2 min
Avg. Velocity $=1.27 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 19,454 cf @ 12.51 hrs
Average Depth at Peak Storage $=2.63$ '
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 633.41 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=290.1^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.87 '

Summary for Reach NDW08: N Ditch W 8

Inflow Area	$=$	93.424 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$278.80 \mathrm{cfs} @$	12.41 hrs , Volume $=$	51.805 af
Outflow	$=$	$277.82 \mathrm{cfs} @$	12.46 hrs , Volume $=$	51.805 af , Atten $=0 \%$, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.08 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.27 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 25,052 cf @ 12.43 hrs
Average Depth at Peak Storage= 2.66'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity $=632.71$ cfs
15.00 x 4.00^{\prime} deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=367.6^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.10'

Summary for Reach NDW09: N Ditch W 9

Inflow Area $=96.875$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for 25 -Year, 24 -Hour event Inflow $=284.75$ cfs @ 12.45 hrs , Volume $=\quad 53.716$ af
Outflow = $283.68 \mathrm{cfs} @ 12.51 \mathrm{hrs}$, Volume $=\quad 53.716 \mathrm{af}$, Atten= 0\%, Lag= 3.4 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $4.11 \mathrm{fps}, \mathrm{Min}$. Travel Time= 1.7 min
Avg. Velocity $=1.27 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage $=28,198$ cf @ 12.48 hrs
Average Depth at Peak Storage=2.68'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 634.68 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=408.5' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.23'

Summary for Reach NDW10: N Ditch W 10

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $4.12 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.9 \mathrm{~min}$
Avg. Velocity $=1.25 \mathrm{fps}$, Avg. Travel Time $=6.2 \mathrm{~min}$
Peak Storage= 32,447 cf @ 12.54 hrs
Average Depth at Peak Storage= 2.70'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 634.24 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length $=465.6^{\prime}$ Slope $=0.0030$ '//
Inlet Invert= 0.00', Outlet Invert= -1.40'

Summary for Reach NUEOC: North Unit East Outlet Culvert

Inflow Area	$=$	174.952 ac,	0.00% Impervious, Inflow Depth $=6.65 " \quad$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$431.68 \mathrm{cfs} @$	12.53 hrs, Volume $=$	97.021 af
Outflow	$=$	$431.63 \mathrm{cfs} @$	12.54 hrs , Volume $=$	97.021 af , Atten $=0 \%$, Lag $=0.2 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=10.70 \mathrm{fps}, \mathrm{Min}$. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.99 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 2,825 cf @ 12.53 hrs
Average Depth at Peak Storage=2.69'
Bank-Full Depth= 4.00' Flow Area= 60.0 sf, Capacity= 551.82 cfs
180.0" W x 48.0" H Box Pipe
$n=0.012$
Length=70.0' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= - 0.21^{\prime}

Summary for Reach NUWOC: North Unit West Outlet Culvert

Inflow Area $=$	174.093 ac,	0.00% Impervious, Inflow Depth $=6.66 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$504.62 \mathrm{cfs} @$	12.51 hrs , Volume $=$	96.549 af
Outflow	$=$	$504.54 \mathrm{cfs} @$	12.52 hrs , Volume $=$	96.549 af , Atten $=0 \%$, Lag= $=0.2 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 11.93 fps , Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=3.24 \mathrm{fps}$, Avg. Travel Time $=0.4 \mathrm{~min}$
Peak Storage= 2,959 cf @ 12.52 hrs
Average Depth at Peak Storage=2.82'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 60.0 sf, Capacity $=601.98$ cfs
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.011$
Length=70.0' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.21^{\prime}

Summary for Reach SBEIC: South Basin East Inlet Culverts

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 7.35 fps , Min. Travel Time= 0.1 min
Avg. Velocity $=2.25 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage $=6,704$ cf @ 12.82 hrs
Average Depth at Peak Storage=2.13'
Bank-Full Depth $=3.00^{\prime}$ Flow Area= 150.0 sf, Capacity= 928.24 cfs
A factor of 5.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$\mathrm{n}=0.012$
Length=63.0' Slope= 0.0021 '/'
Inlet Invert= 0.00', Outlet Invert= -0.13'

Summary for Reach SBWIC: South Basin West Inlet Culvert 1

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 7.20 fps, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.15 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage=6,423 cf @ 12.82 hrs
Average Depth at Peak Storage= 2.04'
Bank-Full Depth= 3.00' Flow Area= 150.0 sf, Capacity= 928.24 cfs
A factor of 5.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$\mathrm{n}=0.012$
Length=63.0' Slope= 0.0021 '/'
Inlet Invert= 0.00', Outlet Invert= - 0.13^{\prime}

Summary for Reach SBWIC2: South Basin West Inlet Culvert 2

Inflow Area $=46.948$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, $24-$ Hour event Inflow $=168.42$ cfs @ 12.33 hrs, Volume $=26.008$ af
Outflow = 168.26 cfs @ 12.34 hrs, Volume= 26.008 af , Atten= 0%, Lag= 0.3 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=5.86 \mathrm{fps}$, Min. Travel Time $=0.2 \mathrm{~min}$
Avg. Velocity $=1.76 \mathrm{fps}$, Avg. Travel Time $=0.6 \mathrm{~min}$
Peak Storage $=1,923$ cf @ 12.33 hrs
Average Depth at Peak Storage=1.44'
Bank-Full Depth=3.00' Flow Area= 60.0 sf, Capacity= 360.04 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
120.0" W x 36.0" H Box Pipe
$\mathrm{n}=0.012$
Length=67.0' Slope $=0.0019$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.13'

Summary for Reach SDE01: S Ditch E 1

Inflow Area $=269.395$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, $24-$ Hour event Inflow $=664.57$ cfs @ 12.55 hrs , Volume= 149.401 af Outflow $=663.74$ cfs @ 12.59 hrs , Volume $=149.401 \mathrm{af}$, Atten= 0%, Lag= 2.4 min

Routing by Stor-Ind+Trans method, Time Span $=0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.75 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.35 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage $=59,862$ cf @ 12.57 hrs
Average Depth at Peak Storage= 2.80'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= $1,254.53$ cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 4.0 '/' Top Width=68.00'
Length=428.5' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDE02: S Ditch E 2

Inflow Area = $\quad 272.868$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=667.67$ cfs @ 12.59 hrs, Volume= $\quad 151.325$ af Outflow $=666.95 \mathrm{cfs} @ 12.63 \mathrm{hrs}$, Volume $=151.325 \mathrm{af}$, Atten $=0 \%$, Lag $=2.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.76 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=5.4 \mathrm{~min}$
Peak Storage=61,534 cf @ 12.60 hrs
Average Depth at Peak Storage= 2.81'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,253.91 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=438.9^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.32'

Summary for Reach SDE03: S Ditch E 3

Inflow Area $=276.240$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=670.36 \mathrm{cfs} @ 12.63 \mathrm{hrs}$, Volume $=153.193 \mathrm{af}$ Outflow = 669.88 cfs @ 12.66 hrs, Volume $=153.193 \mathrm{af}$, Atten= 0\%, Lag= 2.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.76 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage= 53,942 cf @ 12.64 hrs
Average Depth at Peak Storage= 2.82 '
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,252.39 cfs
$40.00^{\prime} \times 4.00$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=383.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'

Summary for Reach SDE04: S Ditch E 4

Inflow Area $=$	279.677 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$673.08 \mathrm{cfs} @$	12.66 hrs , Volume $=$
Outflow	$=$	155.097 af	
	$672.65 \mathrm{cfs} @$	12.70 hrs , Volume $=$	155.097 af , Atten $=0 \%$, Lag $=2.1 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.77 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.38 \mathrm{fps}$, Avg. Travel Time $=4.7 \mathrm{~min}$
Peak Storage=54,481 cf @ 12.67 hrs
Average Depth at Peak Storage= 2.83'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.09 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=386.2^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE05: S Ditch E 5

Inflow Area $=$	331.101 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event		
Inflow	$=$	$738.66 \mathrm{cfs} @$	12.59 hrs , Volume	183.584 af
Outflow	$=$	$738.03 \mathrm{cfs} @$	12.63 hrs , Volume=	183.584 af , Atten $=0 \%$, Lag $=2.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.91 fps , Min. Travel Time= 1.3 min
Avg. Velocity $=1.47 \mathrm{fps}$, Avg. Travel Time $=4.4 \mathrm{~min}$
Peak Storage= 58,319 cf @ 12.61 hrs
Average Depth at Peak Storage= 2.98'
Bank-Full Depth=4.00' Flow Area=216.0 sf, Capacity=1,250.67 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= $3.04 .0{ }^{\prime} /{ }^{\prime}$ Top Width=68.00'
Length=387.7' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE06: S Ditch E 6

Inflow Area $=334.342$ ac, 0.00% Impervious, Inflow Depth $=6.65^{\prime \prime}$ for $25-$ Year, 24 -Hour event Inflow $=741.27 \mathrm{cfs}$ @ 12.63 hrs , Volume $=185.380 \mathrm{af}$ Outflow = $740.72 \mathrm{cfs} @ 12.67 \mathrm{hrs}$, Volume $=185.379 \mathrm{af}$, Atten= 0%, Lag= 2.4 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= $4.92 \mathrm{fps}, \mathrm{Min}$. Travel Time= 1.3 min
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=4.3 \mathrm{~min}$
Peak Storage= 57,999 cf @ 12.65 hrs
Average Depth at Peak Storage $=2.8^{\prime}$
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,254.39 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '//' Top Width= 68.00'
Length=385.4' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Summary for Reach SDE07: S Ditch E 7

Inflow Area $=$	337.906 ac,	0.00%	Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$744.01 \mathrm{cfs} @$	12.67 hrs , Volume $=$	187.354 af
Oufflow	$=$	$743.51 \mathrm{cfs} @$	12.71 hrs , Volume $=$	187.354 af , Atten $=0 \%$, Lag $=2.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.92 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.48 \mathrm{fps}$, Avg. Travel Time $=4.3 \mathrm{~min}$
Peak Storage= 58,310 cf @ 12.68 hrs
Average Depth at Peak Storage= 2.99'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.09 cfs
40.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=386.2' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.16'

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 64

Summary for Reach SDE08: S Ditch E 8

Inflow Area $=$	341.444 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$746.59 \mathrm{cfs} @$	12.70 hrs , Volume=	189.313 af
Outflow	$=$	$746.15 \mathrm{cfs} @$	12.74 hrs , Volume $=$	189.313 af , Atten= 0%, Lag= 2.3 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.93 \mathrm{fps}$, Min. Travel Time $=1.3 \mathrm{~min}$ Avg. Velocity $=1.49 \mathrm{fps}$, Avg. Travel Time $=4.2 \mathrm{~min}$

Peak Storage= 57,332 cf @ 12.72 hrs
Average Depth at Peak Storage $=3.00^{\prime}$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,253.99 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=379.0$ ' Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.14'

Summary for Reach SDE09: S Ditch E 9

Inflow Area $=$	345.191 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$749.24 \mathrm{cfs} @$	12.74 hrs , Volume $=$	191.388 af
Outflow	$=$	$748.68 \mathrm{cfs} @$	12.79 hrs , Volume $=$	191.387 af , Atten $=0 \%$, Lag $=2.6 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.93 \mathrm{fps}$, Min. Travel Time $=1.5 \mathrm{~min}$
Avg. Velocity $=1.49 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage $=65,338$ cf @ 12.76 hrs
Average Depth at Peak Storage=3.01'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= $1,251.76$ cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 4.0 '/' Top Width=68.00'
Length=430.4' Slope= $0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDE10: S Ditch E 10

Inflow Area $=348.276 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=751.09 \mathrm{cfs}$ @ 12.79 hrs , Volume $=193.096$ af Outflow = $750.48 \mathrm{cfs} @ 12.83 \mathrm{hrs}$, Volume $=193.095 \mathrm{af}$, Atten= 0%, Lag= 2.9 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.93 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.50 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage= 72,788 cf @ 12.81 hrs
Average Depth at Peak Storage= 3.01'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,250.20 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=478.3^{\prime}$ Slope $=0.0030 \mathrm{I} /$
Inlet Invert= 0.00', Outlet Invert= -1.43'

Summary for Reach SDNE01: S Ditch NE 1

Inflo	56.688 ac	0.00\% Impervious,	Depth
Inflow	169.77 cfs @	12.27 hrs, Volume=	31.404 af
Outflow	169.15 cfs @	12.31 hrs, Volume=	31.404 af, Atten $=0 \%, \mathrm{Lag}=2.7 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.98 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=0.97 \mathrm{fps}$, Avg. Travel Time $=5.1 \mathrm{~min}$
Peak Storage $=16,910$ cf $@ 12.28$ hrs
Average Depth at Peak Storage=1.28'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= $1,250.37$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 4.0 '/' Top Width= 68.00'
Length=297.6' Slope $=0.0030 \mathrm{I} / \mathrm{\prime}$
Inlet Invert= 0.00', Outlet Invert= -0.89^{\prime}

Summary for Reach SDNE02: S Ditch NE 2

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.02 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=0.97 \mathrm{fps}$, Avg. Travel Time $=5.1 \mathrm{~min}$
Peak Storage $=17,277$ cf @ 12.32 hrs
Average Depth at Peak Storage=1.31'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,252.69 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value $=3.04 .0$ '/' Top Width= 68.00'
Length=296.5' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -0.89^{\prime}

Summary for Reach SDNE03: S Ditch NE 3

Inflow Area $=$	62.375 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, 24 -Hour event		
Inflow	$=$	$185.48 \mathrm{cfs} @$	12.25 hrs , Volume $=$	34.554 af
Outflow	$=$	$184.90 \mathrm{cfs} @$	12.39 hrs , Volume $=$	34.554 af , Atten $=0 \%$, Lag= $=8.1 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.08 fps , Min. Travel Time $=2.1 \mathrm{~min}$
Avg. Velocity $=0.96 \mathrm{fps}$, Avg. Travel Time $=6.8 \mathrm{~min}$
Peak Storage $=23,665$ cf @ 12.35 hrs
Average Depth at Peak Storage=1.34'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity=1,251.91 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=393.6' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.18'

Summary for Reach SDNE04: S Ditch NE 4

Inflow Area	$=$	65.752 ac,	0.00% Impervious, Inflow Depth $=6.65 " \quad$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$193.06 \mathrm{cfs} @$	12.37 hrs, Volume $=$	36.425 af
Outflow	$=$	$192.49 \mathrm{cfs} @$	12.44 hrs , Volume $=$	36.425 af , Atten $=0 \%$, Lag= 4.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.12 fps , Min. Travel Time $=2.4 \mathrm{~min}$
Avg. Velocity $=0.95 \mathrm{fps}$, Avg. Travel Time $=7.8 \mathrm{~min}$
Peak Storage= 27,487 cf @ 12.40 hrs
Average Depth at Peak Storage=1.38'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,249.99 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length $=445.0^{\prime}$ Slope $=0.0030 \mathrm{I} /$
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach SDNE05: S Ditch NE 5

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=3.43 \mathrm{fps}, \mathrm{Min}$. Travel Time $=2.2 \mathrm{~min}$
Avg. Velocity $=1.04 \mathrm{fps}$, Avg. Travel Time $=7.1 \mathrm{~min}$
Peak Storage= 32,535 cf @ 12.41 hrs
Average Depth at Peak Storage=1.61'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity $=1,252.53$ cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 4.0 I/' Top Width=68.00'
Length=443.2' Slope=0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.33'

Summary for Reach SDNW01: S Ditch NW 1

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 1.95 fps, Min. Travel Time $=2.5 \mathrm{~min}$
Avg. Velocity $=0.61 \mathrm{fps}$, Avg. Travel Time $=8.1 \mathrm{~min}$
Peak Storage=7,047 cf @ 12.49 hrs
Average Depth at Peak Storage=0.57'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,355.75 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=295.8' Slope $=0.0035$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDNW02: S Ditch NW 2

Inflow Area $=16.241$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event
Inflow $=50.37$ cfs @ 12.49 hrs , Volume= 8.997 af
Outflow = 50.23 cfs @ 12.56 hrs , Volume $=\quad 8.997 \mathrm{af}$, Atten= 0%, Lag= 4.1 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.00 \mathrm{fps}$, Min. Travel Time $=2.5 \mathrm{~min}$
Avg. Velocity $=0.63 \mathrm{fps}$, Avg. Travel Time $=7.8 \mathrm{~min}$
Peak Storage $=7,447$ cf @ 12.52 hrs
Average Depth at Peak Storage $=0.60^{\prime}$
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity $=1,352.78$ cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=297.1' Slope=0.0035 '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDNW03: S Ditch NW 3

Inflow Area $=19.427$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=\quad 59.78$ cfs @ 12.19 hrs , Volume= $\quad 10.762$ af Outflow = $58.96 \mathrm{cfs} @ 12.28 \mathrm{hrs}$, Volume $=10.762 \mathrm{af}$, Atten= 1%, Lag= 5.1 min

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity= 2.13 fps , Min. Travel Time $=3.0 \mathrm{~min}$
Avg. Velocity $=0.66 \mathrm{fps}$, Avg. Travel Time $=9.6 \mathrm{~min}$
Peak Storage= 10,556 cf @ 12.23 hrs
Average Depth at Peak Storage= 0.65^{\prime}
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,355.08 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 4.0 '/' Top Width= 68.00'
Length $=381.5^{\prime}$ Slope $=0.0035$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.34'

Summary for Reach SDNW04: S Ditch NW 4

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 2.27 fps, Min. Travel Time $=3.3 \mathrm{~min}$
Avg. Velocity $=0.69 \mathrm{fps}$, Avg. Travel Time $=10.8 \mathrm{~min}$
Peak Storage= 13,753 cf @ 12.28 hrs
Average Depth at Peak Storage=0.73'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,353.01 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=445.5^{\prime}$ Slope $=0.0035{ }^{\prime} / \prime$
Inlet Invert= 0.00', Outlet Invert= -1.56'

Summary for Reach SDNW05: S Ditch NW 5

Inflow Area $=$	47.613 ac	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$155.16 \mathrm{cfs} @$	12.16 hrs , Volume $=$
Outflow	$=$	$149.62 \mathrm{cfs} @$	12.24 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.00 \mathrm{fps}$, Min. Travel Time $=2.5 \mathrm{~min}$
Avg. Velocity $=0.89 \mathrm{fps}$, Avg. Travel Time $=8.4 \mathrm{~min}$
Peak Storage= 22,280 cf @ 12.20 hrs
Average Depth at Peak Storage=1.14'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,352.10 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=446.1' Slope $=0.0035$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.56^{\prime}

Summary for Reach SDSE01: S Ditch SE 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 3.52 fps, Min. Travel Time= 1.3 min
Avg. Velocity $=1.22 \mathrm{fps}$, Avg. Travel Time $=3.9 \mathrm{~min}$
Peak Storage= 11,384 cf @ 12.18 hrs
Average Depth at Peak Storage= 1.81'
Bank-Full Depth $=4.00^{\prime}$ Flow Area= 124.0 sf, Capacity= 674.14 cfs
$15.00^{\prime} \times 4.00$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=282.6' Slope= 0.0034 '/'
Inlet Invert= 0.00', Outlet Invert= -0.96'

Summary for Reach SDSE02: S Ditch SE 2

Inflow Area $=$	2.524 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$16.92 \mathrm{cfs} @$	12.11 hrs, Volume $=$
Outflow	$=$	$16.18 \mathrm{cfs} @$	12.18 hrs , Volume=

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=1.76 \mathrm{fps}$, Min. Travel Time $=2.7 \mathrm{~min}$
Avg. Velocity $=0.47 \mathrm{fps}$, Avg. Travel Time $=9.9 \mathrm{~min}$
Peak Storage= 2,584 cf @ 12.14 hrs
Average Depth at Peak Storage= 0.54'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 673.60 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=280.1' Slope $=0.0034$ '/'
Inlet Invert= 0.00', Outlet Invert= $\mathbf{- 0 . 9 5}$ '

Summary for Reach SDSE03: S Ditch SE 3

Inflow Area $=$	3.409 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$22.85 \mathrm{cfs} @$	12.11 hrs , Volume $=$
Outflow	$=$	$21.35 \mathrm{cfs} @$	12.20 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 1.85 fps , Min. Travel Time $=3.5 \mathrm{~min}$
Avg. Velocity $=0.49 \mathrm{fps}$, Avg. Travel Time $=13.0 \mathrm{~min}$
Peak Storage= 4,425 cf @ 12.15 hrs
Average Depth at Peak Storage= 0.65'
Bank-Full Depth $=4.00$ ' Flow Area= 124.0 sf, Capacity= 633.05 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=383.9' Slope=0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'

Summary for Reach SDSE04: S Ditch SE 4

Inflow Area $=$	6.949 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$40.31 \mathrm{cfs} @$	12.15 hrs , Volume $=$
Outflow	$=$	$38.97 \mathrm{cfs} @$	12.24 hrs , Volume $=$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=2.26 \mathrm{fps}$, Min. Travel Time $=3.2 \mathrm{~min}$
Avg. Velocity $=0.60 \mathrm{fps}$, Avg. Travel Time $=11.9 \mathrm{~min}$
Peak Storage= 7,418 cf @ 12.19 hrs
Average Depth at Peak Storage= 0.92'
Bank-Full Depth= 4.00^{\prime} Flow Area= 124.0 sf, Capacity= 633.15 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length $=430.5^{\prime}$ Slope $=0.00301 /$
Inlet Invert= 0.00', Outlet Invert= -1.29'

Summary for Reach SDSE05: S Ditch SE 5

Inflow Area $=\quad 9.803 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.68$ " for $25-$ Year, 24 -Hour event
Inflow $=50.53 \mathrm{cfs} @ 12.21 \mathrm{hrs}$, Volume $=\quad 5.459 \mathrm{af}$

Outflow = $49.64 \mathrm{cfs} @ 12.30 \mathrm{hrs}$, Volume $=\quad 5.459 \mathrm{af}$, Atten $=2 \%$, Lag= 5.4 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= $2.44 \mathrm{fps}, \mathrm{Min}$. Travel Time $=3.3 \mathrm{~min}$
Avg. Velocity $=0.66 \mathrm{fps}$, Avg. Travel Time $=12.1 \mathrm{~min}$
Peak Storage= 9,719 cf @ 12.25 hrs
Average Depth at Peak Storage=1.06'
Bank-Full Depth=4.00' Flow Area= 124.0 sf, Capacity= 632.43 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=478.3' Slope= 0.0030 '/'
Inlet Invert= 0.00', Outlet Invert= -1.43'

Summary for Reach SDSW01: S Ditch SW 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.58 \mathrm{fps}, \mathrm{Min}$. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.23 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 11,798 cf @ 12.22 hrs
Average Depth at Peak Storage=1.87'
Bank-Full Depth $=4.00^{\prime}$ Flow Area $=124.0$ sf, Capacity= 673.84 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 '/' Top Width=47.00'
Length=279.9' Slope=0.0034 $/ /$
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach SDSW02: S Ditch SW 2

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Max. Velocity= 3.64 fps , Min. Travel Time $=1.3 \mathrm{~min}$
Avg. Velocity $=1.23 \mathrm{fps}$, Avg. Travel Time $=3.8 \mathrm{~min}$
Peak Storage= 12,277 cf @ 12.26 hrs
Average Depth at Peak Storage=1.93'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 673.48 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 4.0 ' $/$ ' Top Width= 47.00'
Length=280.2' Slope $=0.0034$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.95'

Summary for Reach SDSW03: S Ditch SW 3

Inflow Area	$=$	46.948 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event
Inflow	$=$	$171.67 \mathrm{cfs} @$	12.28 hrs, Volume=	26.008 af
Outflow	$=$	$168.42 \mathrm{cfs} @$	12.33 hrs , Volume=	26.008 af , Atten= 2%, Lag= 3.2 min

Routing by Stor-Ind+Trans method, Time Span=0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=3.70 \mathrm{fps}$, Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.24 \mathrm{fps}$, Avg. Travel Time $=5.1 \mathrm{~min}$
Peak Storage= 17,179 cf @ 12.30 hrs
Average Depth at Peak Storage=1.99'
Bank-Full Depth= 4.00' Flow Area= 124.0 sf, Capacity= 673.78 cfs
$15.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 4.0 '/' Top Width= 47.00'
Length=377.2' Slope=0.0034 '/'
Inlet Invert= 0.00', Outlet Invert= -1.28'

Summary for Reach SDSW04: S Ditch SW 4

Inflow Area $=331.471 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=735.19$ cfs @ 12.77 hrs, Volume $=183.785$ af Outflow = 734.20 cfs @ 12.82 hrs, Volume $=183.783 \mathrm{af}$, Atten= 0%, Lag $=2.8 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.54 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.37 \mathrm{fps}$, Avg. Travel Time $=5.3 \mathrm{~min}$
Peak Storage $=69,740$ cf @ 12.79 hrs
Average Depth at Peak Storage= 3.17'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,117.74 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=431.0' Slope=0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.03'

Summary for Reach SDSW05: S Ditch SW 5

Inflow Area $=$	327.503 ac,	0.00% Impervious, Inflow Depth $=6.65 " \quad$ for $25-$ Year, $24-$ Hour event		
Inflow	$=$	$733.30 \mathrm{cfs} @$	12.72 hrs , Volume $=$	181.587 af
Outflow	$=$	$732.00 \mathrm{cfs} @$	12.77 hrs , Volume $=$	181.586 af , Atten= $=0 \%$, Lag= 3.1 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.54 \mathrm{fps}$, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=5.8 \mathrm{~min}$
Peak Storage=77,009 cf @ 12.74 hrs
Average Depth at Peak Storage=3.16'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,121.49 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value=3.0 $4.0{ }^{\prime \prime} / \prime$ Top Width=68.00'
Length=478.0' Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.15'

Summary for Reach SDW01: S Ditch W 1

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.31 fps , Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.17 \mathrm{fps}$, Avg. Travel Time $=6.2 \mathrm{~min}$
Peak Storage= 62,835 cf @ 12.54 hrs
Average Depth at Peak Storage=2.89'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= $1,118.49$ cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length= 434.6' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDW02: S Ditch W 2

Inflow Area $=228.232$ ac, 0.00% Impervious, Inflow Depth $=6.66$ " for $25-$ Year, 24 -Hour event
Inflow $=627.07 \mathrm{cfs}$ @ 12.56 hrs , Volume $=126.596 \mathrm{af}$

Outflow = $625.53 \mathrm{cfs} @ 12.61 \mathrm{hrs}$, Volume $=126.596 \mathrm{af}$, Atten $=0 \%$, Lag= 2.8 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.32 fps , Min. Travel Time $=1.7 \mathrm{~min}$
Avg. Velocity $=1.18 \mathrm{fps}$, Avg. Travel Time $=6.1 \mathrm{~min}$
Peak Storage=62,922 cf @ 12.58 hrs
Average Depth at Peak Storage $=2.89^{\prime}$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= $1,119.27$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $\mathrm{n}=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length $=434.0$ ' Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -1.04'

Summary for Reach SDW03: S Ditch W 3

Inflow Area $=$	231.579 ac,	0.00%	Impervious, Inflow Depth $=6.66 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$629.16 \mathrm{cfs} @$	12.61 hrs, Volume $=$	128.450 af
Outflow	$=$	$628.05 \mathrm{cfs} @$	12.65 hrs , Volume $=$	128.450 af , Atten $=0 \%$, Lag $=2.4 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.33 fps , Min. Travel Time= 1.4 min
Avg. Velocity $=1.19 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage $=54,217$ cf @ 12.62 hrs
Average Depth at Peak Storage= 2.89'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,122.22 cfs
40.00' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 I/' Top Width= 68.00'
Length=373.6' Slope=0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.90'

Summary for Reach SDW04: S Ditch W 4

Routing by Stor-Ind+Trans method, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs
Max. Velocity= 4.33 fps , Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.20 \mathrm{fps}$, Avg. Travel Time $=5.2 \mathrm{~min}$
Peak Storage= 54,426 cf @ 12.66 hrs
Average Depth at Peak Storage= 2.90'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,121.62 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length $=374.0^{\prime}$ Slope $=0.0024{ }^{\prime} / \prime$
Inlet Invert= 0.00', Outlet Invert= -0.90^{\prime}

Summary for Reach SDW05: S Ditch W 5

Inflow Area $=284.927$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event
Inflow $=693.31$ cfs @ 12.47 hrs , Volume= 158.004 af
Outflow $=692.11$ cfs @ 12.51 hrs , Volume $=158.004$ af, Atten= 0\%, Lag= 2.5 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.46 \mathrm{fps}$, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.29 \mathrm{fps}$, Avg. Travel Time $=4.9 \mathrm{~min}$
Peak Storage= 58,628 cf @ 12.49 hrs
Average Depth at Peak Storage $=3.06$
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,121.70 cfs
40.00 ' x 4.00' deep channel, $n=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length= 378.1 ' Slope $=0.0024$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.91'

Summary for Reach SDW06: S Ditch W 6

,	288.113 ac ,	0.00\% Impervious,	,
Inflow	697.33 cfs @	12.51 hrs , Volume=	159.768 af
Outflow	696.19 cfs @	12.55 hrs , Volume=	159.768 af, Atten $=0 \%$, Lag $=2.5 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.47 \mathrm{fps}$, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 57,634 cf @ 12.53 hrs
Average Depth at Peak Storage=3.07'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,121.23 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length=370.1' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.89^{\prime}

Summary for Reach SDW07: S Ditch W 7

Inflow Area $=$	291.620 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, 24 -Hour event	
Inflow	$=$	$701.10 \mathrm{cfs} @$	12.55 hrs , Volume $=$	161.711 af
Outflow	$=$	$699.96 \mathrm{cfs} @$	12.59 hrs , Volume $=$	161.711 af , Atten $=0 \%$, Lag= 2.5 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.48 \mathrm{fps}$, Min. Travel Time $=1.4 \mathrm{~min}$
Avg. Velocity $=1.30 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 58,569 cf @ 12.56 hrs
Average Depth at Peak Storage=3.08'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity $=1,120.72$ cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width=68.00'
Length=374.6' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.90'

Summary for Reach SDW08: S Ditch W 8

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.49 \mathrm{fps}$, Min. Travel Time= 1.4 min
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=4.8 \mathrm{~min}$
Peak Storage= 58,431 cf @ 12.60 hrs
Average Depth at Peak Storage= 3.08'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity= 1,122.97 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value=3.0 4.0 '/' Top Width= 68.00'
Length=373.1' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -0.90^{\prime}

Summary for Reach SDW09: S Ditch W 9

Inflow Area $=299.072$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow = 707.05 cfs @ 12.63 hrs, Volume= 165.839 af Outflow $=705.66 \mathrm{cfs}$ @ 12.68 hrs , Volume $=165.839 \mathrm{af}$, Atten $=0 \%$, Lag $=3.0 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=4.48 \mathrm{fps}$, Min. Travel Time $=1.6 \mathrm{~min}$
Avg. Velocity $=1.31 \mathrm{fps}$, Avg. Travel Time $=5.6 \mathrm{~min}$
Peak Storage= 69,826 cf @ 12.65 hrs
Average Depth at Peak Storage=3.10'
Bank-Full Depth=4.00' Flow Area= 216.0 sf, Capacity=1,117.93 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' Top Width= 68.00'
Length= 443.4' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.06'

Summary for Reach SDW10: S Ditch W 10

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.54 fps, Min. Travel Time $=1.8 \mathrm{~min}$
Avg. Velocity $=1.36 \mathrm{fps}$, Avg. Travel Time $=6.0 \mathrm{~min}$
Peak Storage= 78,790 cf @ 12.69 hrs
Average Depth at Peak Storage=3.15'
Bank-Full Depth= 4.00' Flow Area= 216.0 sf, Capacity= 1,122.14 cfs
$40.00^{\prime} \times 4.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 3.04 .0 '/' \quad Top Width=68.00'
Length=489.9' Slope= 0.0024 '/'
Inlet Invert= 0.00', Outlet Invert= -1.18'

Summary for Reach SUEIC: South Unit East Inlet Culvert

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=8.44 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.35 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 3,575 cf @ 12.60 hrs
Average Depth at Peak Storage=1.70'
Bank-Full Depth= 4.00' Flow Area= 120.0 sf, Capacity= 1,103.63 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.012$
Length=70.0' Slope $=0.0030$ '/'

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"

Inlet Invert= 0.00', Outlet Invert= -0.21'

Summary for Reach SUWIC: South Unit West Inlet Culvert

Inflow Area $=$	174.503 ac,	0.00%	Impervious, Inflow Depth $=6.66 " \quad$ for $25-$ Year, 24 -Hour event	
Inflow	$=$	$504.57 \mathrm{cfs} @$	12.54 hrs, Volume	96.780 af
Outflow	$=$	$504.49 \mathrm{cfs} @$	12.54 hrs , Volume=	96.780 af , Atten $=0 \%$, Lag $=0.2 \mathrm{~min}$

Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity $=8.92 \mathrm{fps}$, Min. Travel Time $=0.1 \mathrm{~min}$
Avg. Velocity $=2.39 \mathrm{fps}$, Avg. Travel Time $=0.5 \mathrm{~min}$
Peak Storage= 3,961 cf @ 12.54 hrs
Average Depth at Peak Storage=1.89'
Bank-Full Depth= 4.00' Flow Area= 120.0 sf, Capacity= 1,103.63 cfs
A factor of 2.00 has been applied to the storage and discharge capacity
180.0" W x 48.0" H Box Pipe
$\mathrm{n}=0.012$
Length= 70.0' Slope= 0.0030 '/'
Inlet Invert=0.00', Outlet Invert= $\mathbf{- 0 . 2 1}{ }^{\prime}$

Summary for Reach WMC: West Middle Channel
Inflow Area = $174.503 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.66$ " for $25-$ Year, 24 -Hour event Inflow $=504.91$ cfs @ 12.52 hrs, Volume $=96.780$ af
Outflow = 504.57 cfs @ 12.54 hrs, Volume= 96.780 af, Atten= 0\%, Lag= 1.2 min
Routing by Stor-Ind+Trans method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Max. Velocity= 4.47 fps , Min. Travel Time $=0.7 \mathrm{~min}$
Avg. Velocity $=1.22 \mathrm{fps}$, Avg. Travel Time $=2.5 \mathrm{~min}$
Peak Storage=20,877 cf @ 12.53 hrs
Average Depth at Peak Storage=2.57'
Bank-Full Depth= 4.00' Flow Area= 196.0 sf, Capacity= 1,124.79 cfs

Pescadito Perimeter

Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015
HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC
Page 82
35.00 ' x 4.00' deep channel, $\mathrm{n}=0.030$

Side Slope Z-value= 3.04 .0 '/' Top Width= 63.00'
Length $=185.0^{\prime}$ Slope $=0.0030$ '/'
Inlet Invert= 0.00', Outlet Invert= -0.56'

Summary for Pond PSDB: South Detention Basin

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=537.29' @ 14.23 hrs Surf.Area= 1,957,046 sf Storage= 8,153,736 cf
Plug-Flow detention time $=227.2$ min calculated for 440.988 af (98% of inflow)
Center-of-Mass det. time $=211.2 \mathrm{~min}(1,059.2-847.9)$

Primary OutFlow Max=614.14 cfs @ 14.23 hrs HW=537.29' (Free Discharge)
—1=Culvert (Inlet Controls 614.14 cfs @ 7.68 fps)
Secondary OutFlow Max=27.41 cfs @ 14.23 hrs HW=537.29' (Free Discharge)
—2=Culvert (Barrel Controls 27.41 cfs @ 2.89 fps)

Summary for Link A: Watershed A

Inflow Area $=$	22.714 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$74.63 \mathrm{cfs} @$	12.20 hrs , Volume=
Primary	$=$	$74.63 \mathrm{cfs} @$	12.20 hrs , Volume=

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:\Projects\2013|Pescadito LandfilliDesign\Stormwater (Plan B)\Text and

Summary for Link B: Watershed B

Inflow Area $=$	41.229 ac ,	0.00\% Impervious, In	
Inflow	154.42 cfs @	12.21 hrs , Volume=	22.840 af
Primary	154.42 cfs @	12.21 hrs, Volume=	22.840 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow	= Inflow, Time S	Span= 0.00-36.00 hrs,	. 1 hrs

Summary for Link C: Watershed C

Inflow Area =	21.830 ac, 0.00% Impervious, Inflow Depth = 6.65" for $25-Y e a r, 24$-Hour event		
Inflow	68.56 cfs @	12.23 hrs , Volume=	12.093 af
Primary	68.56 cfs @	12.23 hrs , Volume=	12.093 af, Atten $=0 \%$ Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, $\mathrm{dt}=0.01 \mathrm{hrs}$			

Summary for Link D: Watershed D

Summary for Link E: Watershed E

Inflow Area $=$	21.544 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event		
Inflow	$=$	$67.00 \mathrm{cfs} @$	12.23 hrs, Volume $=$	11.935 af
Primary	$=$	$67.00 \mathrm{cfs} @$	12.23 hrs , Volume $=$	11.935 af , Atten= $=0 \%$, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
25-Year, 24-Hour Outflow Imported from T:IProjects\20131Pescadito LandfilllDesign\Stormwater (Plan B)\Text and

Summary for Link F: Watershed F

Inflow Area =	38.300 ac ,	0.00\% Impervious,	6.65" for 25-Year, 24-Hour event
flow	142.01 cfs @	12.23 hrs , Volume=	21.217 af
Primary	142.01 cfs @	12.23 hrs , Volume=	21.217 af , Atten=0\%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito Landfill\Design\Stormwater (Plan B)\Text and

Summary for Link G: Watershed G

Summary for Link H: Watershed H

Inflow Area $=34.086 \mathrm{ac}, 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, $24-$ Hour event Inflow $=120.02$ cfs @ 12.29 hrs , Volume= 18.883 af Primary $=120.02$ cfs @ 12.29 hrs , Volume $=18.883 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfilllDesign\Stormwater (Plan B)\Text and

Summary for Link I: Watershed I

Inflow Area =	22.132 ac ,	0.00\% Impervious, In	Depth $=6.65$ " for $25-Y e a r, 24-$ Hour event
Inflow	87.99 cfs @	12.16 hrs , Volume=	12.261 af
Primary	87.99 cfs @	12.16 hrs , Volume=	12.261 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow	Inflow, Time	Span= 0.00-36.00 hrs,	01 hrs

Summary for Link J: Watershed J

Inflow Area $=35.077$ ac, 0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, $24-$ Hour event Inflow $=125.25$ cfs @ 12.15 hrs , Volume= 19.432 af Primary $=125.25$ cfs @ 12.15 hrs , Volume= 19.432 af , Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito Landfillldesign\Stormwater (Plan B)\Text and

Summary for Link K: Watershed K

Inflow Area $=$	22.472 ac,	0.00% Impervious, Inflow Depth $=6.65 "$ for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$92.78 \mathrm{cfs} @$	12.15 hrs, Volume $=$
Primary	$=$	$92.78 \mathrm{cfs} @ 12.449 \mathrm{af}$	
	12.15 hrs , Volume $=$	12.449 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$	

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito Landfill 1 Design\Stormwater (Plan B)\Text and

Summary for Link L: Watershed L

Inflow Area $=$	48.208 ac ,	0.00\% Impervious, Inflow Depth = 6.65" for 25-Year, 24-Hour event
Inflow	253.56 cfs @	12.15 hrs, Volume $=\quad 26.706$ af
Primary	253.56 cfs @	12.15 hrs, Volume $=26.706 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow	Inflow, Time	Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link M: Watershed M

Inflow Area $=22.029 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event Inflow $=88.58$ cfs @ 12.16 hrs , Volume= $\quad 12.204 \mathrm{af}$
Primary $=88.58 \mathrm{cfs} @ 12.16 \mathrm{hrs}$, Volume= 12.204 af , Atten= 0%, Lag= 0.0 min
Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito Landfill

Summary for Link N: Watershed \mathbf{N}

Inflow Area $=$	33.325 ac,	0.00% Impervious, Inflow Depth $=6.65$ " for $25-$ Year, 24 -Hour event		
Inflow	$=$	$114.03 \mathrm{cfs} @$	12.16 hrs, Volume $=$	18.461 af
Primary	$=$	$114.03 \mathrm{cfs} @$	12.16 hrs , Volume $=$	18.461 af, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span $=0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:\Projects\2013\Pescadito LandfilliDesign\Stormwater (Plan B)\Text and

Summary for Link O: Watershed O

Inflow Area $=$	22.056 ac,	0.00% Impervious, Inflow Depth $=6.65 " \quad$ for $25-$ Year, 24 -Hour event		
Inflow	$=$	$86.81 \mathrm{cfs} @$	12.16 hrs , Volume $=$	12.219 af
Primary	$=$	$86.81 \mathrm{cfs} @$	12.16 hrs , Volume $=$	12.219 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfilllDesign\Stormwater (Plan B)\Text and

Pescadito Perimeter
Type III 24-hr 25-Year, 24-Hour Rainfall=7.60"
Prepared by CB\&I Environmental and Infrastructure, Inc.
Printed 4/16/2015 HydroCAD® $10.00 \mathrm{~s} / \mathrm{n} 04891$ © 2011 HydroCAD Software Solutions LLC

Page 86
Summary for Link P: Watershed P

Inflow Area $=$	46.766 ac,	0.00% Impervious, Inflow Depth $=6.65 "$	for $25-$ Year, $24-$ Hour event	
Inflow	$=$	$236.48 \mathrm{cfs} @$	12.15 hrs , Volume $=$	25.907 af
Primary	$=$	$236.48 \mathrm{cfs} @$	12.15 hrs , Volume=	25.907 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
25-Year, 24-Hour Outflow Imported from T:IProjects\2013\Pescadito LandfillIDesign\Stormwater (Plan B)\Text and

Summary for Link toDA2: Discharge to DA2

Inflow Area $=809.838$ ac, 6.05% Impervious, Inflow Depth > 6.48" for 25-Year, 24-Hour event Inflow $=614.13 \mathrm{cfs}$ @ 14.23 hrs , Volume= 437.023 af
Primary $=614.13$ cfs @ 14.23 hrs , Volume= 437.023 af , Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link toDA3: Discharge to DA3

Inflow $=$	$27.42 \mathrm{cfs} @ 14.23 \mathrm{hrs}$, Volume=	4.088 af
Primary $=$	$27.42 \mathrm{cfs} @ 14.23 \mathrm{hrs}$, Volume $=$	4.088 af, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Technically Complete, March 11, 2016

Attachment III-C

Appendix III-C. 4

HydroCAD Model Output Files

3. PROPOSED CONDITIONS (POST-DEVELOPMENT)

A. MODEL DIAGRAMS
B. LANDFILL WATERSHED A (TYPICAL OF WATERSHEDS C, E, G, J, K, M, \& O)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
C. LANDFILL WATERSHED B (TYPICAL OF WATERSHEDS D, F, J, L, N, \& P)
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
D. LANDFILL PERIMETER DITCH, CULVERT, \& BASIN SYSTEM
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)
II. 25-YEAR, 24 HOUR (NON-ADJUSTED - 7.6 INCHES)
E. REGIONAL STORMWATER CONDITIONS
I. 100-YEAR, 24 HOUR (ADJUSTED RAINFALL - 9.5 INCHES)

Summary for Subcatchment DA1: DA1

Runoff $=6,885.92$ cfs @ 14.39 hrs , Volume $=2,522.438 \mathrm{af}$, Depth= $5.78{ }^{\prime \prime}$

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area	(ac)	Description			
5,238.870 70					
5,238	870	100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
172.8					Direct Entry

Summary for Subcatchment DA2: DA2

Runoff $=1,321.17$ cfs @ 13.53 hrs, Volume $=353.044$ af, Depth $=5.65{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area	ac)	Description			
749.80069					
749.800		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
109.8					Direct Entry

Summary for Subcatchment DA3: DA3

Runoff = 4,206.83 cfs @ 13.94 hrs, Volume= 1,382.304 af, Depth= 5.27"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}$, $\mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA4: DA4

Runoff = 3,819.89 cfs @ 15.23 hrs, Volume= $1,830.927$ af, Depth> 5.52"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Area	ac)	Description			
3,978.608 68					
3,978		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
249.3					Direct Entry

Summary for Subcatchment DA5: DA5

Runoff $=\quad 471.92$ cfs @ 12.70 hrs , Volume= $\quad 78.776$ af, Depth= $4.75{ }^{\prime \prime}$
Runoff by SCS TR-20 method, UH=SCS, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs Type III 24-hr 100-Year, 24-Hour Rainfall=9.50"

Summary for Subcatchment DA6: DA6

Runoff $=380.18 \mathrm{cfs} @ 12.51 \mathrm{hrs}$, Volume= $\quad 51.712$ af, Depth= 4.62"
Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$ Type III 24-hr 100-Year, 24-Hour Rainfall $=9.50$ "

[^3]
Summary for Subcatchment DA7: DA7

Runoff $=1,024.74$ cfs @ 12.68 hrs , Volume= 162.924 af, Depth= 5.01"

Runoff by SCS TR-20 method, UH=SCS, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Type III 24-hr 100-Year, 24 -Hour Rainfall $=9.50^{\prime \prime}$

Area	ac)	Description			
$390.234 \quad 64$					
390.234		100.00\% Pervious Area			
$\begin{array}{r} \mathrm{Tc} \\ (\mathrm{~min}) \end{array}$	Length (feet)	Slope $(\mathrm{ft} / \mathrm{ft})$	Velocity (ft/sec)	Capacity \qquad	Description
47.8					Direct Entry

Summary for Reach R1: Reach-1

Inflow Area $=5,437.747$ ac, 0.00% Impervious, Inflow Depth $=5.74$ " for 100 -Year, 24 -Hour event
Inflow $=5,960.38$ cfs @ 15.04 hrs , Volume $=2,601.214 \mathrm{af}$
Outflow $=5,940.25 \mathrm{cfs} @ 15.17 \mathrm{hrs}$, Volume $=2,601.088 \mathrm{af}$, Atten $=0 \%$, Lag= 7.9 min
Routing by Stor-Ind method, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
Max. Velocity $=4.88 \mathrm{fps}$, Min. Travel Time $=10.2 \mathrm{~min}$
Avg. Velocity $=2.21 \mathrm{fps}$, Avg. Travel Time $=22.7 \mathrm{~min}$
Peak Storage= 3,652,289 cf @ 15.17 hrs
Average Depth at Peak Storage= 3.99'
Bank-Full Depth= 5.00' Flow Area $=1,780.0$ sf, Capacity $=9,903.65$ cfs
$106.00^{\prime} \times 5.00^{\prime}$ deep channel, $n=0.030$
Side Slope Z-value= 50.0 ' $/$ ' Top Width $=606.00$ '
Length $=3,000.0^{\prime}$ Slope $=0.0030 \mathrm{l} /$
Inlet Invert= 542.00', Outlet Invert= 533.00'

Summary for Pond 2P: NW Detention Basin

Inflow Area =	134.177 ac,	0.00\%	Depth $=4$.	2" for 100-Year, 24-Hour event
Inflow	380.18 cfs @	12.51 hrs , Volume=	51.712 af	
Outflow	0.00 cfs @	0.00 hrs , Volume=	0.000 af ,	Atten $=100 \%, L a g=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af	

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Peak Elev=567.40' @ 25.98 hrs Surf.Area= 10.150 ac Storage= 51.712 af
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time $=$ (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	562.00^{\prime}	57.880 af	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
562.00	9.020	0.000	0.000
564.00	9.440	18.460	18.460
566.00	9.850	19.290	37.750
568.00	10.280	20.130	57.880

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$562.00 '$	Special \& User-Defined
			Elev. (feet) 562.00568 .00
		Disch. (cfs) 0.0000 .000	

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=562.00' (Free Discharge)
$L_{1=S p e c i a l ~ \& ~ U s e r-D e f i n e d ~(~ C o n t r o l s ~}^{0.00 ~ c f s) ~}$

Summary for Pond 3P: NE Detention Basin

Inflow Area $=$,	0.00\% Impervious,	flow Depth = 5.01" for 100-Year, 24 -Hour event
Inflow	1,024.74 cfs @	12.68 hrs , Volume=	162.924 af
Outflow	0.00 cfs @	0.00 hrs , Volume=	0.000 af , Atten $=100 \%$, Lag $=0.0 \mathrm{~min}$
Primary	0.00 cfs @	0.00 hrs , Volume=	0.000 af

Routing by Stor-Ind method, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs
Peak Elev=561.85' @ 26.67 hrs Surf.Area= 28.725 ac Storage= 162.924 af
Plug-Flow detention time= (not calculated: initial storage excedes outflow)
Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avail.Storage	Storage Description
$\# 1$	556.00^{\prime}	167.280 af	Custom Stage Data (Prismatic)Listed below (Recalc)

Elevation (feet)	Surf.Area (acres)	Inc.Store (acre-feet)	Cum.Store (acre-feet)
556.00	26.990	0.000	0.000
558.00	27.580	54.570	54.570
560.00	28.180	55.760	110.330
562.00	28.770	56.950	167.280

Device	Routing	Invert	Outlet Devices
$\# 1$	Primary	$556.00 '$	$\mathbf{5 5 6 5 6 2}$
		Elev. (feet) 556.00562 .00	
		Disch. (cfs) 0.0000 .000	

```
Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=556.00' (Free Discharge)
L1=556562 (Controls 0.00 cfs)
```


Summary for Pond BT: West Detention Basin

Primary OutFlow Max=5,960.38 cfs @ 15.04 hrs HW=547.57' (Free Discharge)
-1=Special \& User-Defined (Custom Controls 5,960.38 cfs)

Summary for Link J1: Junction-1

Inflow Area $=14,125.662 \mathrm{ac}, \quad 0.35 \%$ Impervious, Inflow Depth > 5.72" for 100 -Year, 24 -Hour event Inflow $=14,070.88 \mathrm{cfs} @ 14.67 \mathrm{hrs}$, Volume= $\quad 6,734.902 \mathrm{af}$ Primary $=14,070.88$ cfs @ 14.67 hrs , Volume $=6,734.902 \mathrm{af}$, Atten $=0 \%$, Lag $=0.0 \mathrm{~min}$

Primary outflow $=$ Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link JDA2: Junction DA2

Inflow Area $=1,559.638$ ac, 3.14% Impervious, Inflow Depth > 6.90" for 100-Year, 24-Hour event Inflow $=2,028.14 \mathrm{cfs} @ 13.53 \mathrm{hrs}$, Volume= 897.156 af Primary $=2,028.14 \mathrm{cfs} @ 13.53 \mathrm{hrs}$, Volume $=897.156 \mathrm{af}$, Atten $=0 \%$, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link JDA3: Junction DA3
Inflow Area $=3,149.669 \mathrm{ac}, \quad 0.00 \%$ Impervious, Inflow Depth $=5.36$ " for 100-Year, 24 -Hour event Inflow $=4,311.24 \mathrm{cfs}$ @ 13.94 hrs , Volume $=1,405.732 \mathrm{af}$
Primary $=4,311.24$ cfs @ 13.94 hrs , Volume $=1,405.732 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$

Summary for Link Junction-2: Junction-2

Inflow Area $=7,128.277$ ac, 0.00% Impervious, Inflow Depth $=5.45$ " for 100-Year, 24 -Hour event Inflow $=7,194.96$ cfs @ 14.40 hrs , Volume $=3,236.659$ af
Primary $=7,194.96 \mathrm{cfs}$ @ 14.40 hrs , Volume $=3,236.659 \mathrm{af}$, Atten= 0%, Lag $=0.0 \mathrm{~min}$
Primary outflow = Inflow, Time Span= 0.00-36.00 hrs, dt= 0.01 hrs

Summary for Link SDBE: South Detention Basin East

Inflow $=104.59 \mathrm{cfs} @ 14.01 \mathrm{hrs}$, Volume $=\quad 23.428 \mathrm{af}$
Primary $=104.59 \mathrm{cfs}$ @ 14.01 hrs, Volume= $\quad 23.428 \mathrm{af}$, Atten= 0%, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Primary Outflow Imported from Pescadito Perimeter~Link toDA3.hce

Summary for Link SDBW: South Detention Basin West

Inflow Area $=$	809.838 ac,	6.05%	Impervious, Inflow Depth > $8.06 " \mathrm{for} 100-$ Year, 24 -Hour event	
Inflow	$=$	$717.41 \mathrm{cfs} @$	14.01 hrs , Volume=	544.112 af
Primary	$=$	$717.41 \mathrm{cfs} @$	14.01 hrs , Volume=	544.112 af , Atten= $=0 \%$, Lag= 0.0 min

Primary outflow $=$ Inflow, Time Span= $0.00-36.00 \mathrm{hrs}, \mathrm{dt}=0.01 \mathrm{hrs}$
100-Year, 24-Hour Primary Outflow Imported from Pescadito Perimeter~Link toDA2.hce

[^0]: Primary OutFlow Max=5.40 cfs @ 12.31 hrs HW=3.99' (Free Discharge)
 -1=Custom Weir/Orifice (Controls 0.00 cfs)
 —2=Culvert (Inlet Controls 5.40 cfs @ 7.11 fps)

[^1]: Primary OutFlow Max=12.16 cfs @ 12.17 hrs HW=4.14' (Free Discharge)
 -1=Custom Weir/Orifice (Weir Controls 6.64 cfs @ 1.23 fps)
 —2=Culvert (Inlet Controls 5.51 cfs @ 7.26 fps)

[^2]: Primary OutFlow Max=18.04 cfs @ 12.11 hrs HW=4.21' (Free Discharge)
 -1=Custom Weir/Orifice (Weir Controls 12.48 cfs @ 1.51 fps)
 -2=Culvert (Inlet Controls 5.57 cfs @ 7.33 fps)

[^3]: 35.1

